Extracellular vesicles (EVs) have shown great potential as biomarkers since they reflect the physio-pathological status of the producing cell. In the context of cytotoxicity, it has been found that exposing cells to toxicants leads to changes in protein expression and the cargo of the EVs they produce. Here, we studied large extracellular vesicles (lEVs) derived from human microvascular endothelial cells (HMEC-1) to detect the modifications induced by cell exposure to benzo[a]pyrene (B[a]P).
View Article and Find Full Text PDFBackground & Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) results in steatosis, inflammation (steatohepatitis), and fibrosis. Patients with MASLD more likely develop liver injury in coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As viral RNA has been identified in liver tissues, we studied expression levels and cellular sources of the viral receptor angiotensin-converting enzyme 2 (ACE2) and coreceptors in MASLD and fibroinflammatory liver diseases.
View Article and Find Full Text PDFBiochem Pharmacol
October 2023
Free Radic Biol Med
November 2020
A growing body of evidences indicate the major role of extracellular vesicles (EVs) as players of cell communication in the pathogenesis of liver diseases. EVs are membrane-enclosed vesicles released by cells into the extracellular environment. Oxidative stress is also a key component of liver disease pathogenesis, but no role for hepatocyte-derived EVs has yet been described in the development of this process.
View Article and Find Full Text PDFMarine microalgae are known to be a source of bioactive molecules of interest to human health, such as n-3 polyunsaturated fatty acids (n-3 PUFAs) and carotenoids. The fact that some of these natural compounds are known to exhibit anti-inflammatory, antioxidant, anti-proliferative, and apoptosis-inducing effects, demonstrates their potential use in preventing cancers and cardiovascular diseases (CVDs). Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH), is an ubiquitous environmental pollutant known to contribute to the development or aggravation of human diseases, such as cancer, CVDs, and immune dysfunction.
View Article and Find Full Text PDFMicroalgae are photosynthetic microorganisms that produce numerous bioactive molecules that can be used as food supplement to prevent chronic disease installation. Indeed, they produce phycobiliproteins, polysaccharides, lipids, carotenoids and sterolic compounds. The use of microalgae in human nutrition provide a mixture of these molecules with synergistic effect.
View Article and Find Full Text PDFEnvironmental contaminants, to which humans are widely exposed, cause or worsen several diseases, like cardiovascular diseases and cancers. Among these molecules, polycyclic aromatic hydrocarbons (PAHs) stand out since they are ubiquitous pollutants found in ambient air and diet. Because of their toxic effects, public Health agencies promote development of research studies aiming at increasing the knowledge about PAHs and the discovery of biomarkers of exposure and/or effects.
View Article and Find Full Text PDFToxicol Sci
October 2019
Extracellular vesicles (EVs) are membrane-enclosed nanostructures released by cells into the extracellular environment. As major actors of physiological intercellular communication, they have been shown to be pathogenic mediators of several liver diseases. Extracellular vesicles also appear to be potential actors of drug-induced liver injury but nothing is known concerning environmental pollutants.
View Article and Find Full Text PDFAir pollution is the leading environmental risk factor for disease and premature death in the world. This is mainly due to exposure to urban air particle matter (PM), in particular, fine and ultrafine combustion-derived particles (CDP) from traffic-related air pollution. PM and CDP, including particles from diesel exhaust (DEP), and cigarette smoke have been linked to various cardiovascular diseases (CVDs) including atherosclerosis, but the underlying cellular mechanisms remain unclear.
View Article and Find Full Text PDFExposure to diesel exhaust particles (DEP) may contribute to endothelial dysfunction and cardiovascular disease. DEP, extractable organic material from DEP (DEP-EOM) and certain PAHs seem to trigger [Ca] increase as well as inflammation via GPCRs like βARs and PAR-2. In the present study we explored the involvement of βARs and PAR-2 in effects of DEP-EOM on [Ca] and expression of inflammation-associated genes in the endothelial cell-line HMEC-1.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are widely distributed environmental contaminants, known to affect T lymphocytes. However, the molecular targets and pathways involved in their immunotoxic effects in human T lymphocytes remain unknown. Here, we analyzed the gene expression profile of primary human T lymphocytes treated with the prototypical PAH, benzo[]pyrene (B[]P), using a microarray-based transcriptome analysis.
View Article and Find Full Text PDFIn its classical genomic mode of action, the aryl hydrocarbon receptor (AhR) acts as a ligand activated transcription factor regulating expression of target genes such as CYP1A1 and CYP1B1. Some ligands may also trigger more rapid nongenomic responses through AhR, including calcium signaling (Ca). In the present study we observed that pyrene induced a relatively rapid increase in intracellular Ca-concentrations ([Ca]) in human microvascular endothelial cells (HMEC-1) and human embryonic kidney cells (HEK293) that was attenuated by AhR-inhibitor treatment and/or transient AhR knockdown by RNAi.
View Article and Find Full Text PDFBackground: Exposure to traffic-derived particulate matter (PM), such as diesel exhaust particles (DEP), is a leading environmental cause of cardiovascular disease (CVD), and may contribute to endothelial dysfunction and development of atherosclerosis. It is still debated how DEP and other inhaled PM can contribute to CVD. However, organic chemicals (OC) adhered to the particle surface, are considered central to many of the biological effects.
View Article and Find Full Text PDFExposure to diesel exhaust particles (DEPs) affects endothelial function and may contribute to the development of atherosclerosis and vasomotor dysfunction. As intracellular calcium concentration [Ca] is considered important in myoendothelial signalling, we explored the effects of extractable organic matter from DEPs (DEP-EOM) on [Ca] and membrane microstructure in endothelial cells. DEP-EOM of increasing polarity was obtained by pressurized sequential extraction of DEPs with -hexane (-Hex-EOM), dichloromethane (DCM-EOM), methanol, and water.
View Article and Find Full Text PDFExposure to environmental polycyclic aromatic hydrocarbons (PAHs), such as benzo(a)pyrene (B(a)P), has been linked to several health-threatening risks. PAHs were also shown to hinder adrenergic receptor (ADR) responses. As we previously demonstrated that B(a)P can directly interact with the β2ADR, we investigated here whether B(a)P could decrease β2ADR responsiveness by triggering receptor desensitization phenomena.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (B[a]P), are widely distributed environmental contaminants exerting toxic effects such as genotoxicity and carcinogenicity, mainly associated with aryl hydrocarbon receptor (AhR) activation and the subsequent induction of cytochromes P-450 (CYP) 1-metabolizing enzymes. We previously reported an up-regulation of AhR expression and activity in primary cultures of human T lymphocyte by a physiological activation. Despite the suggested link between exposure to PAHs and the risk of lymphoma, the potential of activated human T lymphocytes to metabolize AhR exogenous ligands such as B[a]P and produce DNA damage has not been investigated.
View Article and Find Full Text PDFMost tumors undergo metabolic reprogramming towards glycolysis, the so-called Warburg effect, to support growth and survival. Overexpression of IF1, the physiological inhibitor of the F0F1ATPase, has been related to this phenomenon and appears to be a relevant marker in cancer. Environmental contributions to cancer development are now widely accepted but little is known about the underlying intracellular mechanisms.
View Article and Find Full Text PDFNitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are widespread environmental pollutants, generated from reactions between PAHs and nitrogen oxides during combustion processes. In the present study we have investigated the mechanisms of CXCL8 (IL-8) responses induced by 1-nitropyrene (1-NP) in human bronchial epithelial BEAS-2B cells, with focus on the possible importance of Ca(2+)-signaling and activation of β2-adrenergic receptors (β2AR). Ca(2+)-chelator treatment obliterated 1-NP-induced CXCL8 (IL-8) responses.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (B(a)P) are widely distributed environmental contaminants, known as potent ligands of the aryl hydrocarbon receptor (AhR). These chemicals trigger an early and transient increase of intracellular calcium concentration ([Ca(2+)](i)), required for AhR-related effects of PAHs. The mechanisms involved in this calcium mobilization were investigated in the present study.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (B(a)P) constitute a major family of widely-distributed environmental toxic contaminants, known as potent ligands of the aryl hydrocarbon receptor (AhR). B(a)P has been recently shown to trigger an early and transient increase of intracellular calcium concentration ([Ca(2+)](i)), involved in AhR-related up-regulation of target genes by B(a)P. This study was designed to determine whether AhR may play a role in [Ca(2+)](i) induction provoked by B(a)P.
View Article and Find Full Text PDFAims: CCL1 is a chemokine thought to contribute to cardiovascular diseases and recently reported to be regulated by the pro-atherogenic lipoprotein(a) (Lp(a)) and the ligand-activated aryl hydrocarbon receptor (AhR). The present study was designed to investigate molecular regulatory pathways involved in Lp(a)-mediated induction of CCL1.
Main Methods: CCL1 regulation was studied in Lp(a)-exposed human primary macrophages using mainly quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay and electrophoretic mobility shift assay (EMSA).
Aims: Aryl hydrocarbons (AHs), such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo(a)pyrene (BP), are environmental contaminants promoting the development of atherosclerosis-related cardiovascular diseases. In order to identify molecular mechanisms involved in these effects, we have analysed AH-mediated regulation of the lipid trafficking Niemann-Pick type C1 protein (NPC1) and its contribution to AH-induced macrophage lipid accumulation.
Methods And Results: Exposure of primary human macrophages to TCDD and BP decreased NPC1 mRNA expression in a time-dependent manner.
Benzo(a)pyrene (BP) is an environmental contaminant known to favor airway inflammation likely through up-regulation of pro-inflammatory cytokines. The present study was designed to characterize its effects toward interleukin-8 (IL-8), a well-established pulmonary inflammatory cytokine. In primary human macrophages, BP was shown to induce IL-8 expression at both mRNA and secretion levels in a dose-dependent manner.
View Article and Find Full Text PDF