Cognitive fMRI research primarily relies on task-averaged responses over many subjects to describe general principles of brain function. Nonetheless, there exists a large variability between subjects that is also reflected in spontaneous brain activity as measured by resting state fMRI (rsfMRI). Leveraging this fact, several recent studies have therefore aimed at predicting task activation from rsfMRI using various machine learning methods within a growing literature on 'connectome fingerprinting'.
View Article and Find Full Text PDFFunctional imaging with sub-millimeter spatial resolution is a basic requirement for assessing functional MRI (fMRI) responses across different cortical depths and is used extensively in the emerging field of laminar fMRI. Such studies seek to investigate the detailed functional organization of the brain and may develop to a new powerful tool for human neuroscience. However, several studies have shown that measurement of laminar fMRI responses can be biased by the image acquisition and data processing strategies.
View Article and Find Full Text PDFThe vast majority of studies using functional magnetic resonance imaging (fMRI) are analyzed on the group level. Standard group-level analyses, however, come with severe drawbacks: First, they assume functional homogeneity within the group, building on the idea that we use our brains in similar ways. Second, group-level analyses require spatial warping and substantial smoothing to accommodate for anatomical variability across subjects.
View Article and Find Full Text PDFOne of the principal goals in functional magnetic resonance imaging (fMRI) is the detection of local activation in the human brain. However, lack of statistical power and inflated false positive rates have recently been identified as major problems in this regard. Here, we propose a non-parametric and threshold-free framework called LISA to address this demand.
View Article and Find Full Text PDF