Publications by authors named "Eric L Moore"

A novel series of 3-amino-piperidin-2-one-based calcitonin gene-related peptide (CGRP) receptor antagonists was invented based upon the discovery of unexpected structure-activity observations. Initial exploration of the structure-activity relationships enabled the generation of a moderately potent lead structure (4). A series of modifications, including ring contraction and inversion of stereocenters, led to surprising improvements in CGRP receptor affinity.

View Article and Find Full Text PDF

The angiotensin II receptors ATR and ATR serve as key components of the renin-angiotensin-aldosterone system. ATR has a central role in the regulation of blood pressure, but the function of ATR is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human ATR bound to an ATR-selective ligand and to an ATR/ATR dual ligand, capturing the receptor in an active-like conformation.

View Article and Find Full Text PDF

In our efforts to develop CGRP receptor antagonists as backups to MK-3207, 2, we employed a scaffold hopping approach to identify a series of novel oxazolidinone-based compounds. The development of a structurally diverse, potent (20, cAMP+HS IC50=0.67 nM), and selective compound (hERG IC50=19 μM) with favorable rodent pharmacokinetics (F=100%, t1/2=7h) is described.

View Article and Find Full Text PDF

Rational modification of the potent calcitonin gene-related peptide (CGRP) receptor antagonist MK-3207 led to a series of analogues with enhanced CNS penetrance and a convenient chemical handle for introduction of a radiolabel. A number of (11)C-tracers were synthesized and evaluated in vivo, leading to the identification of [(11)C]8 ([(11)C]MK-4232), the first positron emission tomography tracer for the CGRP receptor.

View Article and Find Full Text PDF

A new class of CGRP receptor antagonists was identified by replacing the central amide of a previously identified anilide lead structure with ethylene, ethane, or ethyne linkers. (E)-Alkenes as well as alkynes were found to preserve the proper bioactive conformation of the amides, necessary for efficient receptor binding. Further exploration resulted in several potent compounds against CGRP-R with low susceptibility to P-gp mediated efflux.

View Article and Find Full Text PDF

Rational modification of the clinically tested CGRP receptor antagonist MK-3207 (3) afforded an analogue with increased unbound fraction in rat plasma and enhanced aqueous solubility, 2-[(8R)-8-(3,5-difluorophenyl)-8-methyl-10-oxo-6,9-diazaspiro[4.5]dec-9-yl]-N-[(6S)-2'-oxo-1',2',5,7-tetrahydrospiro[cyclopenta[b]pyridine-6,3'-pyrrolo[2,3-b]pyridin]-3-yl]acetamide (MK-8825) (6). Compound 6 maintained similar affinity to 3 at the human and rat CGRP receptors but possessed significantly improved in vivo potency in a rat pharmacodynamic model.

View Article and Find Full Text PDF

The clinical effectiveness of antagonizing the calcitonin gene-related peptide (CGRP) receptor for relief of migraine pain has been clearly demonstrated, but the road to the development of these small molecule antagonists has been daunting. The key hurdle that needed to be overcome was the CGRP receptor itself. The vast majority of the current antagonists recognize similar epitopes on the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1).

View Article and Find Full Text PDF

A previously utilized quinoline-for-N-phenylamide replacement strategy was employed against a central amide in a novel class of CGRP receptor antagonists. A unique and unexpected substitution pattern was ultimately required to maintain reasonable affinity for the CGRP receptor, while at the same time predicting acceptable heterocycle positioning for related analogs. Subsequently, specific quinoline and naphthyridine compounds were prepared which supported these structural predictions by displaying CGRP binding affinities in the 0.

View Article and Find Full Text PDF

Incorporation of polar functionality into a series of highly potent calcitonin gene-related peptide (CGRP) receptor antagonists was explored in an effort to improve pharmacokinetics. This strategy identified piperazinone analogues that possessed improved solubility at acidic pH and increased oral bioavailability in monkeys. Further optimization led to the discovery of the clinical candidate 2-[(8R)-8-(3,5-difluorophenyl)-10-oxo-6,9-diazaspiro[4.

View Article and Find Full Text PDF

A novel series of potent CGRP receptor antagonists containing a central quinoline ring constraint was identified. The combination of the quinoline constraint with a tricyclic benzimidazolinone left hand fragment produced an analog with picomolar potency (14, CGRP K(i)=23 pM). Further optimization of the tricycle produced a CGRP receptor antagonist that exhibited subnanomolar potency (19, CGRP K(i)=0.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) has long been hypothesized to play a key role in migraine pathophysiology, and the advent of small-molecule antagonists has clearly demonstrated a clinical link between blocking the CGRP receptor and migraine efficacy. 2-[(8R)-8-(3,5-Difluorophenyl)-10-oxo-6,9-diazaspiro[4.5]dec-9-yl]-N-[(2R)-2'-oxo-1,1',2',3-tetrahydrospiro[indene-2,3'-pyrrolo[2,3-b]pyridin]-5-yl]acetamide (MK-3207) represents the third CGRP receptor antagonist to display clinical efficacy in migraine trials.

View Article and Find Full Text PDF

A novel class of CGRP receptor antagonists was rationally designed by modifying a highly potent, but structurally complex, CGRP receptor antagonist. Initial modifications focused on simplified structures, with increased flexibility. Subsequent to the preparation of a less-potent but more flexible lead, classic medicinal chemistry methods were applied to restore high affinity (compound 22, CGRP Ki=0.

View Article and Find Full Text PDF

A series of tricyclic CGRP receptor antagonists was optimized in order to improve oral bioavailability. Attenuation of polar surface area and incorporation of a weakly basic indoline nitrogen led to compound 5, a potent antagonist with good oral bioavailability in three species.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) is a neuropeptide that plays a key role in the pathophysiology of migraine headache. MK-0974 (telcagepant) is a potent and selective antagonist of the human and rhesus CGRP receptors and is currently in Phase III clinical studies for the acute treatment of migraine. The pharmacology of MK-0974 has been studied extensively, but there has not been a thorough characterization of its binding properties.

View Article and Find Full Text PDF

Rational modification of a previously identified spirohydantoin lead structure has identified a series of potent spiroazaoxindole CGRP receptor antagonists. The azaoxindole was found to be a general replacement for the hydantoin that consistently improved in vitro potency. The combination of the indanylspiroazaoxindole and optimized benzimidazolinones led to highly potent antagonists (e.

View Article and Find Full Text PDF

Background: Safe and effective treatment for chronic inflammatory and neuropathic pain remains a key unmet medical need for many patients. The recent discovery and description of the transient receptor potential family of receptors including TRPV1 and TRPA1 has provided a number of potential new therapeutic targets for treating chronic pain. Recent reports have suggested that TRPA1 may play an important role in acute formalin and CFA induced pain.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) is a potent neuropeptide that plays a key role in the pathophysiology of migraine headache. CGRP levels in the cranial circulation are increased during a migraine attack, and CGRP itself has been shown to trigger migraine-like headache. The correlation between CGRP release and migraine headache points to the potential utility of CGRP receptor antagonists as novel therapeutics in the treatment of migraine.

View Article and Find Full Text PDF

A rapid analogue approach to identification of spirohydantoin-based CGRP antagonists provided novel, low molecular weight leads. Modification of these leads afforded a series of nanomolar benzimidazolinone-based CGRP receptor antagonists. The oral bioavailability of these antagonists was inversely correlated with polar surface area, suggesting that membrane permeability was a key limitation to absorption.

View Article and Find Full Text PDF