Publications by authors named "Eric L Kruger"

Background And Aims: At the population level, genetic diversity is a key determinant of a tree species' capacity to cope with stress. However, little is known about the relative importance of the different components of genetic diversity for tree stress responses. We compared how two sources of genetic diversity, genotype and cytotype (i.

View Article and Find Full Text PDF

Concurrent measurement of multiple foliar traits to assess the full range of trade-offs among and within taxa and across broad environmental gradients is limited. Leaf spectroscopy can quantify a wide range of foliar functional traits, enabling assessment of interrelationships among traits and with the environment. We analyzed leaf trait measurements from 32 sites along the wide eco-climatic gradient encompassed by the US National Ecological Observatory Network (NEON).

View Article and Find Full Text PDF

All organisms experience fundamental conflicts between divergent metabolic processes. In plants, a pivotal conflict occurs between allocation to growth, which accelerates resource acquisition, and to defense, which protects existing tissue against herbivory. Trade-offs between growth and defense traits are not universally observed, and a central prediction of plant evolutionary ecology is that context-dependence of these trade-offs contributes to the maintenance of intraspecific variation in defense [Züst and Agrawal, , 68, 513-534 (2017)].

View Article and Find Full Text PDF

The ability to tolerate neighboring plants (i.e. degree of competitive response) is a key determinant of plant success in high-competition environments.

View Article and Find Full Text PDF

Foliar functional traits are widely used to characterize leaf and canopy properties that drive ecosystem processes and to infer physiological processes in Earth system models. Imaging spectroscopy provides great potential to map foliar traits to characterize continuous functional variation and diversity, but few studies have demonstrated consistent methods for mapping multiple traits across biomes. With airborne imaging spectroscopy data and field data from 19 sites, we developed trait models using partial least squares regression, and mapped 26 foliar traits in seven NEON (National Ecological Observatory Network) ecoregions (domains) including temperate and subtropical forests and grasslands of eastern North America.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how tree defenses against being eaten by animals affect their growth and ability to outcompete other trees.
  • They found that higher levels of certain chemicals, which protect the trees, actually made it harder for the trees to grow tall and strong.
  • This research helps explain how trees balance their energy between protecting themselves and growing, which is really important for their survival in crowded areas.
View Article and Find Full Text PDF

Leaf mass per area (LMA) is a key plant trait, reflecting tradeoffs between leaf photosynthetic function, longevity, and structural investment. Capturing spatial and temporal variability in LMA has been a long-standing goal of ecological research and is an essential component for advancing Earth system models. Despite the substantial variation in LMA within and across Earth's biomes, an efficient, globally generalizable approach to predict LMA is still lacking.

View Article and Find Full Text PDF

Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco carboxylation rate (V ), to simulate carbon assimilation and typically rely on empirical estimates, including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new theory, based on biochemical coordination and co-optimization of carboxylation and water costs for photosynthesis, suggests that optimal V can be predicted from climate alone, irrespective of soil fertility. Here, we develop this theory and find it captures 64% of observed variability in a global, field-measured V dataset for C plants.

View Article and Find Full Text PDF

The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses.

View Article and Find Full Text PDF

A central challenge to understanding how climate anomalies, such as drought and heatwaves, impact the terrestrial carbon cycle, is quantification and scaling of spatial and temporal variation in ecosystem gross primary productivity (GPP). Existing empirical and model-based satellite broadband spectra-based products have been shown to miss critical variation in GPP. Here, we evaluate the potential of high spectral resolution (10 nm) shortwave (400-2,500 nm) imagery to better detect spatial and temporal variations in GPP across a range of ecosystems, including forests, grassland-savannas, wetlands, and shrublands in a water-stressed region.

View Article and Find Full Text PDF

Factors constraining the geographic ranges of broadleaf tree species in eastern North America were examined in common gardens along a ~1500 km latitudinal transect travers in grange boundaries of four target species: trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) to the north vs. eastern cottonwood (Populus deltoides) and sweet gum (Liquidambar styraciflua) to the south. In 2006 and 2007, carbon-use efficiency (CUE), the proportion of assimilated carbon retained in biomass, was estimated for seedlings of the four species as the quotient of relative growth rate (RGR) and photosynthesis per unit tree mass (Atree ).

View Article and Find Full Text PDF

Researchers from a number of disciplines have long sought the ability to estimate the functional attributes of plant canopies, such as photosynthetic capacity, using remotely sensed data. To date, however, this goal has not been fully realized. In this study, fresh-leaf reflectance spectroscopy (λ=450-2500 nm) and a partial least-squares regression (PLSR) analysis were used to estimate key determinants of photosynthetic capacity-namely the maximum rates of RuBP carboxylation (V(cmax)) and regeneration (J(max))-measured with standard gas exchange techniques on leaves of trembling aspen and eastern cottonwood trees.

View Article and Find Full Text PDF

Common gardens were established along a approximately 900 km latitudinal transect to examine factors limiting geographical distributions of boreal and temperate tree species in eastern North America. Boreal representatives were trembling aspen (Populus tremuloides Michx.) and paper birch (Betula papyrifera Marsh.

View Article and Find Full Text PDF

Technological advances during the past several decades have greatly enhanced our ability to measure leaf photosynthesis virtually anywhere and under any condition. Associated with the resulting proliferation of gas-exchange data is a lingering uncertainty regarding the importance of such measurements when it comes to explaining intrinsic causes of plant growth variation. Accordingly, in this paper we rely on a compilation of data to address the following questions: from both statistical and mechanistic standpoints, how closely does plant growth correlate with measures of leaf photosynthesis? Moreover, in this context, does the importance of leaf photosynthesis as an explanatory variable differ among growth light environments? Across a wide array of species and environments, relative growth rate (RGR) was positively correlated with daily integrals of photosynthesis expressed per unit leaf area (A), leaf mass (A), and plant mass (A).

View Article and Find Full Text PDF

Costs of defense are thought to maintain genetic variations in the expression of defense within plant populations. As with many plant species, aspen exhibits considerable variation in allocation to secondary metabolites. This study examined the independent and interactive effects of genotype, soil fertility and belowground competition on defensive chemistry and growth in trembling aspen (Populus tremuloides).

View Article and Find Full Text PDF

N acquisition often lags behind accelerated C gain in plants exposed to CO2-enriched atmospheres. To help resolve the causes of this lag, we considered its possible link with stomatal closure, a common first-order response to elevated CO2 that can decrease transpiration. Specifically, we tested the hypothesis that declines in transpiration, and hence mass flow of soil solution, can decrease delivery of mobile N to the root and thereby limit plant N acquisition.

View Article and Find Full Text PDF

Relatively little is known about the implications of atmospheric CO2 enrichment for tree responses to biotic disturbances such as folivory. We examined the combined effects of elevated CO2 concentration ([CO2]) and defoliation on growth and physiology of sugar maple (Acer saccharum Marsh.) and trembling aspen (Populus tremuloides Michx.

View Article and Find Full Text PDF