Publications by authors named "Eric L Dane"

Cytotoxic T lymphocytes (CTLs) carry out immunosurveillance by scanning target cells of diverse physical properties for the presence of antigens. While the recognition of cognate antigen by the T cell receptor is the primary signal for CTL activation, it has become increasingly clear that the mechanical stiffness of target cells plays an important role in antigen-triggered T cell responses. However, the molecular machinery within CTLs that transduces the mechanical information of tumor cells remains unclear.

View Article and Find Full Text PDF

Only a minority of patients respond positively to cancer immunotherapy, and addressing this variability is an active area of immunotherapy research. Infiltration of tumors by immune cells is one of the most significant prognostic indicators of response and disease-free survival. However, the ability to noninvasively sample the tumor microenvironment for immune cells remains limited.

View Article and Find Full Text PDF

Activation of the innate immune STimulator of INterferon Genes (STING) pathway potentiates antitumour immunity, but systemic delivery of STING agonists to tumours is challenging. We conjugated STING-activating cyclic dinucleotides (CDNs) to PEGylated lipids (CDN-PEG-lipids; PEG, polyethylene glycol) via a cleavable linker and incorporated them into lipid nanodiscs (LNDs), which are discoid nanoparticles formed by self-assembly. Compared to state-of-the-art liposomes, intravenously administered LNDs carrying CDN-PEG-lipid (LND-CDNs) exhibited more efficient penetration of tumours, exposing the majority of tumour cells to STING agonist.

View Article and Find Full Text PDF

Therapeutic targeting of the immune system in cancer is now a clinical reality and marked successes have been achieved, most notably through the use of checkpoint blockade antibodies and chimeric antigen receptor T cell therapy. However, efforts to develop new immunotherapy agents or combination treatments to increase the proportion of patients who benefit have met with challenges of limited efficacy and/or significant toxicity. Nanomedicines - therapeutics composed of or formulated in carrier materials typically smaller than 100 nm - were originally developed to increase the uptake of chemotherapy agents by tumours and to reduce their off-target toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers investigated how different forms of HIV antigens (mini-proteins vs. larger envelope trimers) behave when used in vaccines, specifically looking at their delivery mechanisms in the body.
  • They found that nanoparticle-formulated antigens were quickly targeted to follicular dendritic cells and concentrated in germinal centers, enhancing immune response compared to free forms.
  • The study highlights the role of innate immune pathways, suggesting that the structure of antigens plays a crucial role in improving vaccine effectiveness and antibody production.
View Article and Find Full Text PDF

The design and synthesis of amide-linked saccharide oligomers and polymers, which are predisposed to fold into specific ordered secondary structures, is of significant interest. Herein, right-handed helical poly amido-saccharides (PASs) with β-N-(1→2)-d-amide linkages are synthesized by the anionic ring-opening polymerization of an altrose β-lactam monomer (alt-lactam). The right-handed helical conformation is engineered into the polymers by preinstalling the β configuration of the lactam ring in the monomer via the stereospecific [2+2] cycloaddition of trichloroacetyl isocyanate with a d-glycal possessing a 3-benzyloxy group oriented to the α-face of the pyranose.

View Article and Find Full Text PDF

Poly-amido-saccharides (PAS) are carbohydrate-based, enantiopure synthetic polymers in which sugar repeat units are joined by amide linkages. This unique and relatively rigid pyranose backbone contributes to their defined helical secondary structure and remarkable chemical properties. Glucose- (glc-) and galactose- (gal-) PAS 10-mer structures are synthesized and investigated with molecular dynamics (MD) simulations and experimental measurements.

View Article and Find Full Text PDF

The synthesis of novel carbohydrate-based polymers allows the structure to be tailored at the monomer level for a specific property and expands the range of available structures beyond those found in nature. Using a controlled anionic polymerization, a new type of carbohydrate polymer is synthesized in which glucose-derived monomers are joined by an α-1,2 amide linkage to give enantiopure poly-amido-saccharides (PASs). To investigate the effect of adding ionizable carboxylic acid groups, such as those found in natural polysaccharides containing glucuronic acid, the oxidation of the primary alcohol at the C6-position of the repeat unit to a carboxylic acid is reported.

View Article and Find Full Text PDF

The first synthesis of enantiopure glucose octyl ether polyamido-saccharides (GOE-PAS) with a defined molecular weight and narrow dispersity is reported using a controlled anionic ring-opening polymerization of a glucose-derived β-lactam sugar monomer possessing octyl ether chains. This new polymer structure is characterized by NMR, infrared (IR), optical rotation, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). At room temperature, the polymers form lamellar (Lam) phases.

View Article and Find Full Text PDF

The first synthesis of poly-amido-saccharides (PASs) from a galactose(gal)-derived β-lactam sugar monomer is reported. The polymers are prepared using a controlled anionic ring-opening polymerization and characterized by NMR, optical rotation, IR, and GPC. Galactose-derived PASs display high solubility in aqueous solutions and are noncytotoxic to HepG2, CHO, and HeLa cell lines.

View Article and Find Full Text PDF

The synthesis and characterization of a new class of bioinspired carbohydrate amphiphiles that modulate biofilm formation are reported. The carbohydrate head is an enantiopure poly-amido-saccharide (PAS) prepared by a controlled anionic polymerization of β-lactam monomers derived from either glucose or galactose. The supramolecular assemblies formed by PAS amphiphiles are investigated in solution using fluorescence assays and dynamic light scattering.

View Article and Find Full Text PDF

Enantiopure poly-amido-saccharides (PASs) with a defined molecular weight and narrow dispersity are synthesized using an anionic ring-opening polymerization of a β-lactam sugar monomer. The PASs have a previously unreported main chain structure that is composed of pyranose rings linked through the 1- and 2-positions by an amide with α-stereochemistry. The monomer is synthesized in one-step from benzyl-protected D-glucal and polymerized using mild reaction conditions to give degrees of polymerization ranging from 25 to >120 in high yield.

View Article and Find Full Text PDF

The synthesis and characterization of oxidized bis-thioketal-trispiro dinitroxide biradicals that orient the nitroxides in a rigid, approximately orthogonal geometry are reported. The biradicals show better performance as polarizing agents in dynamic nuclear polarization (DNP) NMR experiments as compared to biradicals lacking the constrained geometry. In addition, the biradicals display improved solubility in aqueous media due to the presence of polar sulfoxides.

View Article and Find Full Text PDF

The emergence and re-emergence of bacterial strains that are resistant to current antibiotics reveal the clinical need for new agents that possess broad-spectrum antibacterial activity. Furthermore, bacteriophobic coatings that repel bacteria are important for medical devices, as the lifetime, reliability, and performance of implant devices are hindered by bacterial adhesion and infection. Dendrimers, a specific class of monodisperse macromolecules, have recently shown potential to function as both antibacterial agents and antimicrobial surface coatings.

View Article and Find Full Text PDF

The synthesis of poly-1,3-bisdiphenylene-2-phenyl allyl (BDPA) radicals via a new anionic oligomerization strategy is reported. The material displays a reversible reduction from the orange-red radical to the blue carbanion in solution.

View Article and Find Full Text PDF

Thioether-containing poly(para-phenylene-ethynylene) (PPE) copolymers show a strong fluorescence turn-on response when exposed to oxidants in solution as a result of the selective conversion of thioether substituents into sulfoxides and sulfones. We propose that the increase in fluorescence quantum yield (Phi(F)) upon oxidation is the result of both an increase in the rate of fluorescence (k(F)), as a result of greater spatial overlap of the frontier molecular orbitals in the oxidized materials, and an increase in the fluorescence lifetime (tau(F)), due to a decrease in the rate of nonradiative decay. Contrary to established literature, the reported sulfoxides do not always act as fluorescence quenchers.

View Article and Find Full Text PDF

The design and synthesis of a water-soluble 1,3-bis(diphenylene)-2-phenylallyl (BDPA) radical via the conjugate addition of a derivatized fluorene nucelophile is described. The compound is designed for use in dynamic nuclear polarization NMR. Its 9 GHz EPR spectrum in glycerol/water is reported.

View Article and Find Full Text PDF

The synthesis and characterization of a biradical containing a 1,3-bisdiphenylene-2-phenylallyl (BDPA) free radical covalently attached to a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) free radical are described. The synthesis of the biradical is a step toward improved polarizing agents for dynamic nuclear polarization (DNP).

View Article and Find Full Text PDF