An explanation for the origin and number of clumps along the equatorial ring of Supernova 1987A has eluded decades of research. Our linear analysis and hydrodynamic simulations of the expanding ring prior to the supernova reveal that it is subject to the Crow instability between vortex cores. The dominant wave number is remarkably consistent with the number of clumps, suggesting that the Crow instability stimulates clump formation.
View Article and Find Full Text PDFStructures evoking vortex rings can be discerned in shock-accelerated flows ranging from astrophysics to inertial confinement fusion. By constructing an analogy between vortex rings produced in conventional propulsion systems and rings generated by a shock impinging upon a high-aspect-ratio protrusion along a material interface, we extend classical, constant-density vortex-ring theory to compressible multifluid flows. We further demonstrate saturation of such vortex rings as the protrusion aspect ratio is increased, thus explaining morphological differences observed in practice.
View Article and Find Full Text PDFA numerical model for cavitation in blood is developed based on the Keller-Miksis equation for spherical bubble dynamics with the Carreau model to represent the non-Newtonian behavior of blood. Three different pressure waveforms driving the bubble oscillations are considered: a single-cycle Gaussian waveform causing free growth and collapse, a sinusoidal waveform continuously driving the bubble, and a multi-cycle pulse relevant to contrast-enhanced ultrasound. Parameters in the Carreau model are fit to experimental measurements of blood viscosity.
View Article and Find Full Text PDFInertial cavitation in soft matter is an important phenomenon featured in a wide array of biological and engineering processes. Recent advances in experimental, theoretical, and numerical techniques have provided access to a world full of nonlinear physics, yet most of our quantitative understanding to date has been centered on a spherically symmetric description of the cavitation process in water. However, cavitation bubble growth and collapse rarely occur in a perfectly symmetrical fashion, particularly in soft materials.
View Article and Find Full Text PDFCharacterization of soft materials is challenging due to their high compliance and the strain-rate dependence of their mechanical properties. The inertial microcavitation-based high strain-rate rheometry (IMR) method [Estrada et al., J.
View Article and Find Full Text PDFAn understanding of the acoustic cavitation threshold is essential for minimizing cavitation bio-effects in diagnostic ultrasound and for controlling cavitation-mediated tissue ablation in focused ultrasound procedures. The homogeneous cavitation threshold is an intrinsic material property of recognized importance to biomedical ultrasound as well as a variety of other applications requiring cavitation control. However, measurements of the acoustic cavitation threshold in water differ from those predicted by classic nucleation theories.
View Article and Find Full Text PDFThe study described here examined the effects of cavitation nuclei characteristics on histotripsy. High-speed optical imaging was used to compare bubble cloud behavior and ablation capacity for histotripsy generated from intrinsic and artificial cavitation nuclei (gas-filled microbubbles, fluid-filled nanocones). Results showed a significant decrease in the cavitation threshold for microbubbles and nanocones compared with intrinsic-nuclei controls, with predictable and well-defined bubble clouds generated in all cases.
View Article and Find Full Text PDFA variety of approaches have been used to model the dynamics of a single, isolated bubble nucleated by a microsecond length high-amplitude ultrasound pulse (e.g. a histotripsy pulse).
View Article and Find Full Text PDFPredicting the onset of non-spherical oscillations of bubbles in soft matter is a fundamental cavitation problem with implications to sonoprocessing, polymeric materials synthesis, and biomedical ultrasound applications. The shape stability of a bubble in a Kelvin-Voigt viscoelastic medium with nonlinear elasticity, the simplest constitutive model for soft solids, is analytically investigated and compared to experiments. Using perturbation methods, we develop a model reducing the equations of motion to two sets of evolution equations: a Rayleigh-Plesset-type equation for the mean (volume-equivalent) bubble radius and an equation for the non-spherical mode amplitudes.
View Article and Find Full Text PDFThe destructive growth and collapse of cavitation bubbles are used for therapeutic purposes in focused ultrasound procedures and can contribute to tissue damage in traumatic injuries. Histotripsy is a focused ultrasound procedure that relies on controlled cavitation to homogenize soft tissue. Experimental studies of histotripsy cavitation have shown that the extent of ablation in different tissues depends on tissue mechanical properties and waveform parameters.
View Article and Find Full Text PDFExperimental observations of the growth and collapse of acoustically and laser-nucleated single bubbles in water and agarose gels of varying stiffness are presented. The maximum radii of generated bubbles decreased as the stiffness of the media increased for both nucleation modalities, but the maximum radii of laser-nucleated bubbles decreased more rapidly than acoustically nucleated bubbles as the gel stiffness increased. For water and low stiffness gels, the collapse times were well predicted by a Rayleigh cavity, but bubbles collapsed faster than predicted in the higher stiffness gels.
View Article and Find Full Text PDFThis paper examines the experimental requirements to observe two shock fronts driven by a single x-ray source in systems with a sharp absorption edge. We consider systems where the peak of the x-ray radiation drive coincides with the K-edge of the carbon, which occurs at a photon energy of 284 eV, causing photons to be deposited in two regions. The low-energy photons (E < 284 eV) penetrate further and drive the main shock, while the higher-energy photons (E > 284 eV) are absorbed in the ablated plasma.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2018
Acoustic aberrations caused by natural heterogeneities of biological soft tissue are a substantial problem for histotripsy, a therapeutic ultrasound technique that uses acoustic cavitation to mechanically fractionate and destroy unwanted target tissue without damaging surrounding tissue. These aberrations, primarily caused by sound speed variations, result in severe defocusing of histotripsy pulses, thereby decreasing treatment efficacy. The gold standard for aberration correction (AC) is to place a hydrophone at the desired focal location to directly measure phase aberrations, which is a method that is infeasible in vivo.
View Article and Find Full Text PDFBubble-induced color Doppler (BCD) is a histotripsy-therapy monitoring technique that uses Doppler ultrasound to track the motion of residual cavitation nuclei that persist after the collapse of the histotripsy bubble cloud. In this study, BCD is used to monitor tissue fractionation during histotripsy tissue therapy, and the BCD signal is correlated with the destruction of structural and non-structural components identified histologically to further understand how BCD monitors the extent of treatment. A 500-kHz, 112-element phased histotripsy array is used to generate approximately 6- × 6- × 7-mm lesions within ex vivo bovine liver tissue by scanning more than 219 locations with 30-1000 pulses per location.
View Article and Find Full Text PDFHistotripsy is a developing focused ultrasound procedure that uses cavitation bubbles to mechanically homogenize soft tissue. To better understand the mechanics of tissue damage, a numerical model of single-bubble dynamics was used to calculate stress, strain and strain rate fields produced by a cavitation bubble exposed to a tensile histotripsy pulse. The explosive bubble growth and its subsequent collapse were found to depend on the properties of the surrounding material and on the histotripsy pulse.
View Article and Find Full Text PDFIn certain cavitation-based ultrasound techniques, the relative importance of thermally vs mechanically induced damage is unclear. As a first step to investigate this matter, a numerical model for bubble dynamics in tissue-like, viscoelastic media is presented in which full thermal effects are included inside and outside the bubble, as well as interdiffusion of vapor and non-condensible gas inside the bubble. Soft tissue is assumed to behave according to a Kelvin-Voigt model in which viscous and elastic contributions are additive.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
August 2016
Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.
View Article and Find Full Text PDFHistotripsy is a non-invasive ultrasonic ablation method that uses cavitation to mechanically fractionate tissue into acellular debris. With a sufficient number of pulses, histotripsy can completely fractionate tissue into a liquid-appearing homogenate with no cellular structures. The location, shape and size of lesion formation closely match those of the cavitation cloud.
View Article and Find Full Text PDFHistotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has indicated that a cavitation cloud can be formed by a single pulse with one high-amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue, and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold.
View Article and Find Full Text PDFHistotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
February 2014
Histotripsy is an ultrasound ablation method that depends on the initiation and maintenance of a cavitation bubble cloud to fractionate soft tissue. This paper studies how tissue properties impact the pressure threshold to initiate the cavitation bubble cloud. Our previous study showed that shock scattering off one or more initial bubbles, expanded to sufficient size in the focus, plays an important role in initiating a dense cavitation cloud.
View Article and Find Full Text PDFIn order to predict bioeffects in contrast-enhanced diagnostic and therapeutic ultrasound procedures, the dynamics of cavitation microbubbles in viscoelastic media must be determined. For this theoretical study, measured 1.5 to 7.
View Article and Find Full Text PDFAlloherpesviruses affect freshwater and marine fish species. The aim of the current study was to characterize a novel alloherpesvirus in Atlantic cod (Gadus morhua). Samples were processed for histopathology, transmission electron microscopy (TEM), virus isolation, molecular characterization, and in situ hybridization (ISH).
View Article and Find Full Text PDFA high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse.
View Article and Find Full Text PDFThe shock-induced collapse of a pre-existing nucleus near a solid surface in the focal region of a lithotripter is investigated. The entire flow field of the collapse of a single gas bubble subjected to a lithotripter pulse is simulated using a high-order accurate shock- and interface-capturing scheme, and the wall pressure is considered as an indication of potential damage. Results from the computations show the same qualitative behavior as that observed in experiments: a re-entrant jet forms in the direction of propagation of the pulse and penetrates the bubble during collapse, ultimately hitting the distal side and generating a water-hammer shock.
View Article and Find Full Text PDF