Spatial patterns of genetic variation compared across species provide information about the predictability of genetic diversity in natural populations, and areas requiring conservation measures. Due to their remarkable fish diversity, rivers in Neotropical regions are ideal systems to confront theory with observations and would benefit greatly from such approaches given their increasing vulnerability to anthropogenic pressures. We used SNP data from 18 fish species with contrasting life-history traits, co-sampled across 12 sites in the Maroni- a major river system from the Guiana Shield -, to compare patterns of intraspecific genetic variation and identify their underlying drivers.
View Article and Find Full Text PDFWithin-species genetic diversity is crucial for the persistence and integrity of populations and ecosystems. Conservation actions require an understanding of factors influencing genetic diversity, especially in the context of global change. Both population size and connectivity are factors greatly influencing genetic diversity; the relative importance of these factors can, however, change through time.
View Article and Find Full Text PDFMarine organisms show population structure at a relatively fine spatial scale, even in open habitats. The tools commonly used to assess subtle patterns of connectivity have diverse levels of resolution and can complement each other to inform on population structure. We assessed and compared the discriminatory power of genetic markers and otolith shape to reveal the population structure on evolutionary and ecological time scales of the common sole (Solea solea), living in the Eastern English Channel (EEC) stock off France and the UK.
View Article and Find Full Text PDFAge-related telomere shortening is considered a hallmark of the ageing process. However, a recent cross-sectional ageing study of relative telomere length (rTL) in bats failed to detect a relationship between rTL and age in the long-lived genus Myotis (M. myotis and M.
View Article and Find Full Text PDFRecent theoretical and experimental models have revealed the role played by evolution during species spread, and in particular have questioned the influence of genetic drift at range edges. By investigating the spread of an aquatic invader in patchy habitats, we quantified genetic drift and explored its consequences for genetic diversity and fitness. We examined the interplay of gene flow and genetic drift in 36 populations of the red swamp crayfish, Procambarus clarkii, in a relatively recently invaded wetland area (30 years, Brière, northwest France).
View Article and Find Full Text PDFBats are the longest-lived mammals, given their body size. However, the underlying molecular mechanisms of their extended healthspans are poorly understood. To address this question we carried out an eight-year longitudinal study of ageing in long-lived bats (Myotis myotis).
View Article and Find Full Text PDFThe effective size of a population is the size of an ideal population which would undergo genetic drift at the same rate as the real population. The balance between selection and genetic drift depends on the effective population size ( N), rather than the real numbers of individuals in the population ( N). The objectives of the present study were to estimate N in the potato cyst nematode Globodera pallida and to explore the causes of a low N/ N ratio in cyst nematodes using artificial populations.
View Article and Find Full Text PDFThe advent of high throughput sequencing and genotyping technologies enables the comparison of patterns of polymorphisms at a very large number of markers. While the characterization of genetic structure from individual sequencing data remains expensive for many nonmodel species, it has been shown that sequencing pools of individual DNAs (Pool-seq) represents an attractive and cost-effective alternative. However, analyzing sequence read counts from a DNA pool instead of individual genotypes raises statistical challenges in deriving correct estimates of genetic differentiation.
View Article and Find Full Text PDFUnderstanding aging is a grand challenge in biology. Exceptionally long-lived animals have mechanisms that underpin extreme longevity. Telomeres are protective nucleotide repeats on chromosome tips that shorten with cell division, potentially limiting life span.
View Article and Find Full Text PDFUrban areas are highly fragmented and thereby exert strong constraints on individual dispersal. Despite this, some species manage to persist in urban areas, such as the garden snail, Cornu aspersum, which is common in cityscapes despite its low mobility. Using landscape genetic approaches, we combined study area replication and multiscale analysis to determine how landscape composition, configuration and connectivity influence snail dispersal across urban areas.
View Article and Find Full Text PDFMonitoring wild populations is crucial for their effective management. Noninvasive genetic methods provide robust data from individual free-ranging animals, which can be used in capture-mark-recapture (CMR) models to estimate demographic parameters without capturing or disturbing them. However, sex- and status-specific behaviour, which may lead to differences in detection probabilities, is rarely considered in monitoring.
View Article and Find Full Text PDFClimatic variables are often considered when studying environmental impacts on population dynamics of terrestrial species. However, the temporal resolution considered varies depending on studies, even among studies of the same taxa. Most studies interested in climatic impacts on populations tend to average climatic data across timeframes covering life cycle periods of the organism in question or longer, even though most climatic databases provide at least a monthly resolution.
View Article and Find Full Text PDFStudying wild pathogen populations in natural ecosystems offers the opportunity to better understand the evolutionary dynamics of biotic diseases in crops and to enhance pest control strategies. We used simulations and genetic markers to investigate the spatial and temporal population genetic structure of wild populations of the beet cyst nematode Heterodera schachtii on a wild host plant species, the sea beet (Beta vulgaris spp. maritima), the wild ancestor of cultivated beets.
View Article and Find Full Text PDFThe sustainability of modern agriculture relies on strategies that can control the ability of pathogens to overcome chemicals or genetic resistances through natural selection. This evolutionary potential, which depends partly on effective population size (N e ), is greatly influenced by human activities. In this context, wild pathogen populations can provide valuable information for assessing the long-term risk associated with crop pests.
View Article and Find Full Text PDFThe white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, is threatening the cave-dwelling bat fauna of North America by killing individuals by the thousands in hibernacula each winter since its appearance in New York State less than ten years ago. Epidemiological models predict that WNS will reach the western coast of the USA by 2035, potentially eliminating most populations of susceptible bat species in its path (Frick et al. 2015; O'Regan et al.
View Article and Find Full Text PDFDeviations of genotypic frequencies from Hardy-Weinberg equilibrium (HWE) expectations could reveal important aspects of the biology of populations. Deviations from HWE due to heterozygote deficits have been recorded for three plant-parasitic nematode species. However, it has never been determined whether the observed deficits were due (i) to the presence of null alleles, (ii) to a high level of consanguinity and/or (iii) to a Wahlund effect.
View Article and Find Full Text PDFUnderstanding the factors that contribute to population genetic divergence across a species' range is a long-standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present-day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa.
View Article and Find Full Text PDFThe demographic history of Rhinolophus hipposideros (lesser horseshoe bat) was reconstructed across its European, North African and Middle-Eastern distribution prior to, during and following the most recent glaciations by generating and analysing a multimarker data set. This data set consisted of an X-linked nuclear intron (Bgn; 543 bp), mitochondrial DNA (cytb-tRNA-control region; 1630 bp) and eight variable microsatellite loci for up to 373 individuals from 86 localities. Using this data set of diverse markers, it was possible to determine the species' demography at three temporal stages.
View Article and Find Full Text PDFBackground: Non-human primate communication is thought to be fundamentally different from human speech, mainly due to vast differences in vocal control. The lack of these abilities in non-human primates is especially striking if compared to some marine mammals and bird species, which has generated somewhat of an evolutionary conundrum. What are the biological roots and underlying evolutionary pressures of the human ability to voluntarily control sound production and learn the vocal utterances of others? One hypothesis is that this capacity has evolved gradually in humans from an ancestral stage that resembled the vocal behavior of modern primates.
View Article and Find Full Text PDFThe impact of ecology and social organization on genetic structure at landscape spatial scales, where gene dynamics shape evolution as well as determine susceptibility to habitat fragmentation, is poorly understood. Attempts to assess these effects must take into account the potentially confounding effects of history. We used microsatellites to compare genetic structure in seven bat species with contrasting patterns of roosting ecology and social organization, all of which are codistributed in an ancient forest habitat that has been exceptionally buffered from radical habitat shifts.
View Article and Find Full Text PDFThe sensory drive theory of speciation predicts that populations of the same species inhabiting different environments can differ in sensory traits, and that this sensory difference can ultimately drive speciation. However, even in the best-known examples of sensory ecology driven speciation, it is uncertain whether the variation in sensory traits is the cause or the consequence of a reduction in levels of gene flow. Here we show strong genetic differentiation, no gene flow and large echolocation differences between the allopatric Myanmar and Thai populations of the world's smallest mammal, Craseonycteris thonglongyai, and suggest that geographic isolation most likely preceded sensory divergence.
View Article and Find Full Text PDFThe potential for parallel impacts of habitat change on multiple biodiversity levels has important conservation implications. We report on the first empirical test of the 'species-genetic diversity correlation' across co-distributed taxa with contrasting ecological traits in the context of habitat fragmentation. In a rainforest landscape undergoing conversion to oil palm, we show that depauperate species richness in fragments is mirrored by concomitant declines in population genetic diversity in the taxon predicted to be most susceptible to fragmentation.
View Article and Find Full Text PDF