Publications by authors named "Eric J Markel"

The plant pathogen Pseudomonas syringae pv. tomato DC3000 (DC3000) is found in a wide variety of environments and must monitor and respond to various environmental signals such as the availability of iron, an essential element for bacterial growth. An important regulator of iron homeostasis is Fur (ferric uptake regulator), and here we present the first study of the Fur regulon in DC3000.

View Article and Find Full Text PDF

The innate genetic variability characteristic of chronic hepatitis C virus (HCV) infection makes drug resistance a concern in the clinical development of HCV inhibitors. To address this, a transient replication assay was developed to evaluate the replication fitness and the drug sensitivity of NS5B sequences isolated from the sera of patients with chronic HCV infection. This novel assay directly compares replication between NS5B isolates, thus bypassing the potential sequence and metabolic differences which may arise with independent replicon cell lines.

View Article and Find Full Text PDF

Improved treatments for chronic hepatitis C virus (HCV) infection are needed due to the suboptimal response rates and deleterious side effects associated with current treatment options. The triphosphates of 2'-C-methyl-adenosine and 2'-C-methyl-guanosine were previously shown to be potent inhibitors of the HCV RNA-dependent RNA polymerase (RdRp) that is responsible for the replication of viral RNA in cells. Here we demonstrate that the inclusion of a 7-deaza modification in a series of purine nucleoside triphosphates results in an increase in inhibitory potency against the HCV RdRp and improved pharmacokinetic properties.

View Article and Find Full Text PDF

Efficient replication of hepatitis C virus (HCV) replicons in cell culture is associated with specific sequences not generally observed in vivo. These cell culture adaptive mutations dramatically increase the frequency with which replication is established in vitro. However, replicons derived from HCV isolates that have been shown to replicate in chimpanzees do not replicate in cell culture even when these adaptive mutations are introduced.

View Article and Find Full Text PDF

Progress toward development of better therapies for the treatment of hepatitis C virus (HCV) infection has been hampered by poor understanding of HCV biology and the lack of biological assays suitable for drug screening. Here we describe a powerful HCV replication system that employs HCV replicons expressing the beta-lactamase reporter (bla replicons) and subpopulations of Huh7 cells that are more permissive (or "enhanced") to HCV replication than naïve Huh7 cells. Enhanced cells represent a small fraction of permissive cells present among naïve Huh7 cells that is enriched during selection with replicons expressing the neomycin phosphotransferase gene (neo replicons).

View Article and Find Full Text PDF