Publications by authors named "Eric J Dufek"

Liquid electrolytes in batteries are typically treated as macroscopically homogeneous ionic transport media despite having a complex chemical composition and atomistic solvation structures, leaving a knowledge gap of the microstructural characteristics. Here, we reveal a unique micelle-like structure in a localized high-concentration electrolyte, in which the solvent acts as a surfactant between an insoluble salt in a diluent. The miscibility of the solvent with the diluent and simultaneous solubility of the salt results in a micelle-like structure with a smeared interface and an increased salt concentration at the centre of the salt-solvent clusters that extends the salt solubility.

View Article and Find Full Text PDF

During the extreme fast charging (XFC) of lithium-ion batteries, lithium inventory loss (LLI) and reaction mechanisms at the anode/electrolyte interface are crucial factors in performance and safety. Determining the causes of LLI and quantifying them remain an essential challenge. We present mechanistic research on the evolution and interactions of aging mechanisms at the anode/electrolyte interface.

View Article and Find Full Text PDF

Lithium (Li) metal serving as an anode has the potential to double or triple stored energies in rechargeable Li batteries. However, they typically have short cycling lifetimes due to parasitic reactions between the Li metal and electrolyte. It is critically required to develop early fault-detection methods for different failure mechanisms and quick lifetime-prediction methods to ensure rapid development.

View Article and Find Full Text PDF

The presence and stability of solid electrolyte interphase (SEI) on graphitic electrodes is vital to the performance of lithium-ion batteries (LIBs). However, the formation and evolution of SEI remain the least understood area in LIBs due to its dynamic nature, complexity in chemical composition, heterogeneity in morphology, as well as lack of reliable in situ/operando techniques for accurate characterization. In addition, chemical composition and morphology of SEI are not only affected by the choice of electrolyte, but also by the nature of the electrode surface.

View Article and Find Full Text PDF

Surface impurities involving parasitic reactions and gas evolution contribute to the degradation of high Ni content LiNiMnCoO (NMC) cathode materials. The transient kinetic technique of temporal analysis of products (TAP), density functional theory, and infrared spectroscopy have been used to study the formation of surface impurities on varying nickel content NMC materials (NMC811, NMC622, NMC532, NMC433, NMC111) in the presence of CO and HO. CO reactivity on a clean surface as characterized by CO conversion rate in the TAP reactor follows the order: NMC811 > NMC622 > NMC532 > NMC433 > NMC111.

View Article and Find Full Text PDF

Lithium metal has been considered an ideal anode for high-energy rechargeable Li batteries, although its nucleation and growth process remains mysterious, especially at the nanoscale. Here, cryogenic transmission electron microscopy was used to reveal the evolving nanostructure of Li metal deposits at various transient states in the nucleation and growth process, in which a disorder-order phase transition was observed as a function of current density and deposition time. The atomic interaction over wide spatial and temporal scales was depicted by reactive molecular dynamics simulations to assist in understanding the kinetics.

View Article and Find Full Text PDF

In the electrode/electrolyte interface of a typical lithium-ion battery, a solid electrolyte interphase layer is formed as a result of electrolyte decomposition during the initial charge/discharge cycles. Electron leakage from the anode to the electrolyte reduces the Li-ion and makes it more reactive, resulting in decomposition of the organic electrolyte. To study the Li-electrolyte solvation, solvent exchange, and subsequent solvent decomposition reactions at the anode/electrolyte interface, we have extended the existing ReaxFF reactive force field parameter sets to organic electrolyte species, such as ethylene carbonate, ethyl methyl carbonate, vinylene carbonate, and LiPF salt.

View Article and Find Full Text PDF

This paper describes the development and preliminary testing of a competitive surface-enhanced Raman scattering (SERS) immunoassay for calcitriol, the 1,25-dihydroxy metabolite (1,25-(OH)(2)-D(3)) of vitamin D(3). Deficiencies in 1,25-(OH)(2)-D have been linked to renal disease, while elevations are linked to hypercalcemia. Thus, there has been a sharp increase in the clinical demand for measurements of this metabolite.

View Article and Find Full Text PDF

Bioassays are indispensable tools in areas ranging from fundamental life science research to clinical practice. Improving assay speed and levels of detection will have a profound impact in all of these areas. We recently developed a rapid, sensitive format for immunosorbent assays that expedites antigen mass transport by rotating the capture substrate.

View Article and Find Full Text PDF

[reaction: see text] The syntheses of three new 2,2'-bipyridinium tetrafluoroborate sensitizers are reported. Their preliminary electrochemical and photophysical properties are compared to the properties of the more widely used pyrylium cation sensitizers. In addition, the first examples of triplet-triplet absorption spectra of 2,2'-bipyridinium ions are presented.

View Article and Find Full Text PDF