Publications by authors named "Eric J Darrah"

Gammaherpesviruses are ubiquitous pathogens that are associated with B cell lymphomas. In the early stages of chronic infection, these viruses infect naive B cells and subsequently usurp the B cell differentiation process through the germinal center response to ensure latent infection of long-lived memory B cells. A unique feature of early gammaherpesvirus chronic infection is a robust differentiation of irrelevant, virus-nonspecific B cells with reactivities against self-antigens and antigens of other species.

View Article and Find Full Text PDF

Ataxia-Telangiectasia mutated (ATM) kinase participates in multiple networks, including DNA damage response, oxidative stress, and mitophagy. ATM also supports replication of diverse DNA and RNA viruses. Gammaherpesviruses are prevalent cancer-associated viruses that benefit from ATM expression during replication.

View Article and Find Full Text PDF

Manipulation of host cellular pathways is a strategy employed by gammaherpesviruses, including mouse gammaherpesvirus 68 (MHV68), in order to negotiate a chronic infection. Ataxia-telangiectasia mutated (ATM) plays a unique yet incompletely understood role in gammaherpesvirus infection, as it has both proviral and antiviral effects. Chronic gammaherpesvirus infection is poorly controlled in a host with global ATM insufficiency, whether the host is a mouse or a human.

View Article and Find Full Text PDF

Gammaherpesviruses establish life-long infection in most adults and are associated with the development of B cell lymphomas. While the interaction between gammaherpesviruses and splenic B cells has been explored, very little is known about gammaherpesvirus infection of B-1 B cells, innate-like B cells that primarily reside in body cavities. This study demonstrates that B-1 B cells harbor the highest frequency of latently infected cells in the peritoneum throughout chronic infection, highlighting a previously unappreciated feature of gammaherpesvirus biology.

View Article and Find Full Text PDF

Unlabelled: The cholesterol synthesis pathway is a ubiquitous cellular biosynthetic pathway that is attenuated therapeutically by statins. Importantly, type I interferon (IFN), a major antiviral mediator, also depresses the cholesterol synthesis pathway. Here we demonstrate that attenuation of cholesterol synthesis decreases gammaherpesvirus replication in primary macrophages in vitro and reactivation from peritoneal exudate cells in vivo.

View Article and Find Full Text PDF

Unlabelled: Gammaherpesviruses are ubiquitous pathogens that are associated with the development of B cell lymphomas. Gammaherpesviruses employ multiple mechanisms to transiently stimulate a broad, polyclonal germinal center reaction, an inherently mutagenic stage of B cell differentiation that is thought to be the primary target of malignant transformation in virus-driven lymphomagenesis. We found that this gammaherpesvirus-driven germinal center expansion was exaggerated and lost its transient nature in the absence of interferon-regulatory factor 1 (IRF-1), a transcription factor with antiviral and tumor suppressor functions.

View Article and Find Full Text PDF

Gammaherpesviruses are cancer-associated pathogens that establish life-long infection in most adults. Insufficiency of Ataxia-Telangiectasia mutated (ATM) kinase leads to a poor control of chronic gammaherpesvirus infection via an unknown mechanism that likely involves a suboptimal antiviral response. In contrast to the phenotype in the intact host, ATM facilitates gammaherpesvirus reactivation and replication in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • In the fruit fly Drosophila melanogaster, the NARROW ABDOMEN (NA) ion channel, linked to the mammalian NALCN channel, is crucial for maintaining daily activity rhythms in pacemaker neurons.
  • Mutations in the putative auxiliary channels UNC79 and UNC80 cause severe disruptions in circadian locomotor activity, similar to those seen in NA mutants, indicating their essential role in the functioning of these pacemaker neurons.
  • A complex regulatory relationship exists between NA, UNC79, and UNC80, with evidence showing that they work together in the brain's circadian clock neurons to support rhythmic behavior, beyond just regulating each other's expression.
View Article and Find Full Text PDF