Publications by authors named "Eric J Bryson"

We examined the contribution of calcium-induced calcium release (CICR) to synaptic transmission from rod photoreceptor terminals. Whole-cell recording and confocal calcium imaging experiments were conducted on rods with intact synaptic terminals in a retinal slice preparation from salamander. Low concentrations of ryanodine stimulated calcium increases in rod terminals, consistent with the presence of ryanodine receptors.

View Article and Find Full Text PDF

Background: GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl) was determined in red-sensitive, large single cones from the tiger salamander retinal slice.

Results: Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels.

View Article and Find Full Text PDF

We found that L-glutamate (L-Glu) inhibits L-type Ca2+ currents (ICa) in rod photoreceptors. This inhibition was studied in isolated rods or rods in retinal slices from tiger salamander using perforated patch whole cell recordings and Cl(-)-imaging techniques. Application of L-Glu inhibited ICa by approximately 20% at 0.

View Article and Find Full Text PDF

Adenosine is released from retina in darkness; photoreceptors possess A2 adenosine receptors, and A2 agonists inhibit L-type Ca2+ currents (ICa) in rods. We therefore investigated whether A2 agonists inhibit rod inputs into second-order neurons and whether selective antagonists to A1, A2A, or A3 receptors prevent Ca2+ influx through rod ICa. [Ca2+]i changes in rods were assessed with fura-2.

View Article and Find Full Text PDF

This study used imaging and electrophysiological techniques in salamander retinal slices to correlate Ca2+ and Cl- levels in rods and thus test the hypothesis of a feedback interaction between Ca2+- and Ca2+-activated Cl- channels whereby Cl- efflux through Cl- channels can inhibit Ca2+ channels. Increasing [K+]o levels produced a concentration-dependent depolarization of rods accompanied by increases in [Ca2+]i measured with Fura-2. The voltage dependence of increases in [Ca2+]i was compared with the voltage dependence of the calcium current (ICa).

View Article and Find Full Text PDF

Purpose: Lysophosphatidic acid (LPA) is a phospholipid growth factor that stimulates proliferation, chemotaxis, cation currents, and K(+) currents in retinal pigment epithelial (RPE) cells. LPA receptor transduction was analyzed in human and rat RPE cells.

Methods: Cells were cultured with standard methods, and signaling pathways were analyzed with a variety of approaches, including whole-cell recording, calcium imaging, and second-messenger assays.

View Article and Find Full Text PDF

Presynaptic inhibition is a major mechanism for regulating synaptic transmission in the CNS and adenosine inhibits Ca(2+) currents (I(Ca)) to reduce transmitter release at several synapses. Rod photoreceptors possess L-type Ca(2+) channels that regulate the release of L-glutamate. In the retina, adenosine is released in the dark when L-glutamate release is maximal.

View Article and Find Full Text PDF