Publications by authors named "Eric I Corwin"

The first-passage time for a single diffusing particle has been studied extensively, but the first-passage time of a system of many diffusing particles, as is often the case in physical systems, has received little attention until recently. We consider two models for many-particle diffusion-one treats each particle as independent simple random walkers while the other treats them as coupled to a common space-time random forcing field that biases particles nearby in space and time in similar ways. The first-passage time of a single diffusing particle under both models shows the same statistics and scaling behavior.

View Article and Find Full Text PDF

Jamming is an emergent phenomenon wherein the local stability of individual particles percolates to form a globally rigid structure. However, the onset of rigidity does not imply that every particle becomes rigid, and indeed some remain locally unstable. These particles, if they become unmoored from their neighbors, are called rattlers, and their identification is critical to understanding the rigid backbone of a packing, as these particles cannot bear stress.

View Article and Find Full Text PDF

In many-particle diffusions, particles that move the furthest and fastest can play an outsized role in physical phenomena. A theoretical understanding of the behavior of such extreme particles is nascent. A classical model, in the spirit of Einstein's treatment of single-particle diffusion, has each particle taking independent homogeneous random walks.

View Article and Find Full Text PDF

In computational models of particle packings with periodic boundary conditions, it is assumed that the packing is attached to exact copies of itself in all possible directions. The periodicity of the boundary then requires that all of the particles' images move together. An infinitely repeated structure, on the other hand, does not necessarily have this constraint.

View Article and Find Full Text PDF

Amorphous systems of soft particles above jamming have more contacts than are needed to achieve mechanical equilibrium. The force network of a granular system with a fixed contact network is thus underdetermined and can be characterized as a random instantiation within the space of the force network ensemble. In this Letter, we show that defect contacts that are not necessary for stability of the system can be uniquely identified by examining the boundaries of this space of allowed force networks.

View Article and Find Full Text PDF

A spatial distribution is hyperuniform if it has local density fluctuations that vanish in the limit of long length scales. Hyperuniformity is a well known property of both crystals and quasicrystals. Of recent interest, however, is disordered hyperuniformity: the presence of hyperuniform scaling without long-range configurational order.

View Article and Find Full Text PDF

SignificanceMany protocols used in material design and training have a common theme: they introduce new degrees of freedom, often by relaxing away existing constraints, and then evolve these degrees of freedom based on a rule that leads the material to a desired state at which point these new degrees of freedom are frozen out. By creating a unifying framework for these protocols, we can now understand that some protocols work better than others because the choice of new degrees of freedom matters. For instance, introducing particle sizes as degrees of freedom to the minimization of a jammed particle packing can lead to a highly stable state, whereas particle stiffnesses do not have nearly the same impact.

View Article and Find Full Text PDF

Memory encoding by cyclic shear is a reliable process to store information in jammed solids, yet its underlying mechanism and its connection to the amorphous structure are not fully understood. When a jammed sphere packing is repeatedly sheared with cycles of the same strain amplitude, it optimizes its mechanical response to the cyclic driving and stores a memory of it. We study memory by cyclic shear training as a function of the underlying stability of the amorphous structure in marginally stable and highly stable packings, the latter produced by minimizing the potential energy using both positional and radial degrees of freedom.

View Article and Find Full Text PDF

Jamming criticality defines a universality class that includes systems as diverse as glasses, colloids, foams, amorphous solids, constraint satisfaction problems, neural networks, etc. A particularly interesting feature of this class is that small interparticle forces (f) and gaps (h) are distributed according to nontrivial power laws. A recently developed mean-field (MF) theory predicts the characteristic exponents of these distributions in the limit of very high spatial dimension, d→∞ and, remarkably, their values seemingly agree with numerical estimates in physically relevant dimensions, d=2 and 3.

View Article and Find Full Text PDF

We numerically study the structure of the interactions occurring in three-dimensional systems of hard spheres at jamming, focusing on the large-scale behavior. Given the fundamental role in the configuration of jammed packings, we analyze the propagation through the system of the weak forces and of the variation of the coordination number with respect to the isostaticity condition, ΔZ. We show that these correlations can be successfully probed by introducing a correlation function weighted on the density-density fluctuations.

View Article and Find Full Text PDF

The similarity in mechanical properties of dense active matter and sheared amorphous solids has been noted in recent years without a rigorous examination of the underlying mechanism. We develop a mean-field model that predicts that their critical behavior-as measured by their avalanche statistics-should be equivalent in infinite dimensions up to a rescaling factor that depends on the correlation length of the applied field. We test these predictions in two dimensions using a numerical protocol, termed "athermal quasistatic random displacement," and find that these mean-field predictions are surprisingly accurate in low dimensions.

View Article and Find Full Text PDF

The random Lorentz gas (RLG) is a minimal model of transport in heterogeneous media that exhibits a continuous localization transition controlled by void space percolation. The RLG also provides a toy model of particle caging, which is known to be relevant for describing the discontinuous dynamical transition of glasses. In order to clarify the interplay between the seemingly incompatible percolation and caging descriptions of the RLG, we consider its exact mean-field solution in the infinite-dimensional d→∞ limit and perform numerics in d=2.

View Article and Find Full Text PDF

No known analytic framework precisely explains all the phenomena observed in jamming. The replica theory for glasses and jamming is a mean-field theory which attempts to do so by working in the limit of infinite dimensions, such that correlations between neighbors are negligible. As such, results from this mean-field theory are not guaranteed to be observed in finite dimensions.

View Article and Find Full Text PDF

The unconventional thermal properties of jammed amorphous solids are directly related to their density of vibrational states. While the vibrational spectrum of jammed soft sphere solids has been fully described, the vibrational spectrum of hard spheres, a model glass former often related to physical colloidal glasses, is still unknown due to the difficulty of treating the nonanalytic interaction potential. We bypass this difficulty using the recently described effective interaction potential for the free energy of thermal hard spheres.

View Article and Find Full Text PDF

Thermal fluctuations are not large enough to lead to state changes in granular materials. However, in many cases, such materials do achieve reproducible bulk properties, suggesting that they are controlled by an underlying statistical mechanics analogous to thermodynamics. While themodynamic descriptions of granular materials have been explored, they have not yet been concretely connected to their underlying statistical mechanics.

View Article and Find Full Text PDF

The replica theory of glasses predicts that in the infinite dimensional mean field limit, there exist two distinct glassy phases of matter: stable glass and marginal glass. We have developed a technique to experimentally probe these phases of matter using a colloidal glass. We avoid the difficulties inherent in measuring the long time behavior of glasses by instead focusing on the very short time dynamics of the ballistic to caged transition.

View Article and Find Full Text PDF

One of the most remarkable predictions to emerge out of the exact infinite-dimensional solution of the glass problem is the Gardner transition. Although this transition was first theoretically proposed a generation ago for certain mean-field spin glass models, its materials relevance was only realized when a systematic effort to relate glass formation and jamming was undertaken. A number of nontrivial physical signatures associated with the Gardner transition have since been considered in various areas, from models of structural glasses to constraint satisfaction problems.

View Article and Find Full Text PDF

We report on a nonequilibrium phase of matter, the minimally disordered crystal phase, which we find exists between the maximally amorphous glasses and the ideal crystal. Even though these near crystals appear highly ordered, they display glassy and jamming features akin to those observed in amorphous solids. Structurally, they exhibit a power-law scaling in their probability distribution of weak forces and small interparticle gaps as well as a flat density of vibrational states.

View Article and Find Full Text PDF

Jamming occurs when objects like grains are packed tightly together (e.g. grain silos).

View Article and Find Full Text PDF

We introduce a guided network growth model, which we call the degree product rule process, that uses solely local information when adding new edges. For small numbers of candidate edges our process gives rise to a second-order phase transition, but becomes first order in the limit of global choice. We provide the set of critical exponents required to characterize the nature of this percolation transition.

View Article and Find Full Text PDF
Article Synopsis
  • Thermal colloids in a liquid exhibit a switch from short-time ballistic motion to long-time diffusive motion, influenced by the liquid's properties and structure.
  • Observations of tracer particles in both Newtonian fluids (matching the Clercx-Schram model) and viscoelastic Maxwell fluids reveal differences in expected behavior, particularly in the transition between motion types.
  • Measurements indicate that the effective mass of free-moving particles in viscoelastic fluids increases, while the plateau modulus decreases, highlighting discrepancies from theoretical predictions.
View Article and Find Full Text PDF

Recent theoretical advances have led to the creation of a unified phase diagram for the thermal glass and athermal jamming transitions. This diagram makes clear that, while related, the mode-coupling-or dynamic-glass transition is distinct from the jamming transition, occurring at a finite temperature and significantly lower density than the jamming transition. Nonetheless, we demonstrate a prejamming transition in athermal frictionless spheres which occurs at the same density as the mode-coupling transition and is marked by percolating clusters of locally rigid particles.

View Article and Find Full Text PDF

We experimentally study quasi-two-dimensional dilute granular flow around intruders whose shape, size, and relative impact speed are systematically varied. Direct measurement of the flow field reveals that three in-principle independent measurements of the nonuniformity of the flow field are in fact all linearly related: (1) granular temperature, (2) flow-field divergence, and (3) shear-strain rate. The shock front is defined as the local maxima in each of these measurements.

View Article and Find Full Text PDF

In conventional fluids, viscosity depends on temperature according to a strict relationship. To change this relationship, one must change the molecular nature of the fluid. Here, we create a metafluid whose properties are derived not from the properties of molecules but rather from chaotic waves excited on the surface of vertically agitated water.

View Article and Find Full Text PDF

At the jamming transition, amorphous packings are known to display anomalous vibrational modes with a density of states (DOS) that remains constant at low frequency. The scaling of the DOS at higher packing fractions remains, however, unclear. One might expect to find a simple Debye scaling, but recent results from effective medium theory and the exact solution of mean-field models both predict an anomalous, non-Debye scaling.

View Article and Find Full Text PDF