Publications by authors named "Eric Herbst"

Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula.

View Article and Find Full Text PDF

Complex, nitrogen-bearing interstellar molecules, especially amines, are targets of particular interest for detection in star- and planet-forming regions, due to their possible relevance to prebiotic chemistry. However, these NH-bearing molecules are not universally detected in sources where other, oxygen-bearing complex organic molecules (COMs) are often plentiful. Nevertheless, recent astrochemical models have often predicted large abundances for NH-bearing complex organics, based on their putative production on dust grains.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used spectral matched filtering with radio data from the Green Bank Telescope and identified two types of nitrile-group-functionalized PAHs, 1- and 2-cyanonaphthalene, in the interstellar medium, specifically in the TMC-1 molecular cloud.
  • * The paper explores possible gas-phase formation pathways for these PAHs from smaller organic precursor molecules that exist in space.
View Article and Find Full Text PDF

Key Points: Although the role of TBC1D1 within the heart remains unknown, expression of TBC1D1 increases in the left ventricle following an acute infarction, suggesting a biological importance within this tissue. We investigated the mechanistic role of TBC1D1 within the heart, aiming to establish the consequences of attenuating TBC1D1 signalling in the development of diabetic cardiomyopathy, as well as to determine potential sex differences. TBC1D1 ablation increased plasma membrane fatty acid binding protein content and myocardial palmitate oxidation.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons and polycyclic aromatic nitrogen heterocycles are thought to be widespread throughout the universe, because these classes of molecules are probably responsible for the unidentified infrared bands, a set of emission features seen in numerous Galactic and extragalactic sources. Despite their expected ubiquity, astronomical identification of specific aromatic molecules has proven elusive. We present the discovery of benzonitrile (-CHCN), one of the simplest nitrogen-bearing aromatic molecules, in the interstellar medium.

View Article and Find Full Text PDF

The nature and existence of mitochondrial lactate oxidation is debated in the literature. Obscuring the issue are disparate findings in isolated mitochondria, as well as relatively low rates of lactate oxidation observed in permeabilized muscle fibres. However, respiration with lactate has yet to be directly assessed in brain tissue with the mitochondrial reticulum intact.

View Article and Find Full Text PDF

In this paper, we propose a general formalism that allows for the estimation of radiolysis decomposition pathways and rate coefficients suitable for use in astrochemical models, with a focus on solid phase chemistry. Such a theory can help increase the connection between laboratory astrophysics experiments and astrochemical models by providing a means for modelers to incorporate radiation chemistry into chemical networks. The general method proposed here is targeted particularly at the majority of species now included in chemical networks for which little radiochemical data exist; however, the method can also be used as a starting point for considering better studied species.

View Article and Find Full Text PDF

Aims/hypothesis: While the underlying mechanisms in the development of insulin resistance remain inconclusive, metabolic dysfunction in both white adipose tissue (WAT) and skeletal muscle have been implicated in the process. Therefore, we investigated the independent and combined effects of α-linolenic acid (ALA) supplementation and exercise training on whole-body glucose homeostasis and mitochondrial bioenergetics within the WAT and skeletal muscle of obese Zucker rats.

Methods: We randomly assigned obese Zucker rats to receive a control diet alone or supplemented with ALA and to remain sedentary or undergo exercise training for 4 weeks (CON-Sed, ALA-Sed, CON-Ex and ALA-Ex groups).

View Article and Find Full Text PDF

TBC1 domain family member 1 (TBC1D1), a Rab GTPase-activating protein and paralogue of Akt substrate of 160 kDa (AS160), has been implicated in both insulin- and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase-mediated glucose transporter type 4 (GLUT4) translocation. However, the role of TBC1D1 in contracting muscle remains ambiguous. We therefore explored the metabolic consequence of ablating TBC1D1 in both resting and contracting skeletal muscles, utilizing a rat TBC1D1 KO model.

View Article and Find Full Text PDF

The collisions between high-energy ions and solids can result in significant physical and chemical changes to the material. These effects are potentially important for better understanding the chemistry of interstellar and planetary bodies, which are exposed to cosmic radiation and the solar wind, respectively; however, modeling such collisions on a detailed microscopic basis has thus far been largely unsuccessful. To that end, a new model, entitled CIRIS: the Chemistry of Ionizing Radiation in Solids, was created to calculate the physical and chemical effects of the irradiation of solid materials.

View Article and Find Full Text PDF

Complex organic molecules such as sugars and amides are ubiquitous in star- and planet-forming regions, but their formation mechanisms have remained largely elusive until now. Here we show in a combined experimental, computational, and astrochemical modeling study that interstellar aldehydes and enols like acetaldehyde (CH3CHO) and vinyl alcohol (C2H3OH) act as key tracers of a cosmic-ray-driven nonequilibrium chemistry leading to complex organics even deep within low-temperature interstellar ices at 10 K. Our findings challenge conventional wisdom and define a hitherto poorly characterized reaction class forming complex organic molecules inside interstellar ices before their sublimation in star-forming regions such as SgrB2(N).

View Article and Find Full Text PDF

The present study investigated the impact of acute exercise on stimulating mitochondrial respiratory function in mouse cerebral cortex. Where pyruvate-stimulated respiration was not affected by acute exercise, glutamate respiration was enhanced following the exercise bout. Additional assessment revealed that this affect was dependent on the presence of malate and did not occur when substituting glutamine for glutamate.

View Article and Find Full Text PDF

Changes in nuclear receptor interacting protein 140 (RIP140) influences mitochondrial content in skeletal muscle; however, the translation of these findings to the brain has not been investigated. The present study examined the impact of overexpressing and ablating RIP140 on mitochondrial content in muscle and the cortex through examining mRNA, mtDNA, and mitochondrial protein content. Our results show that changes in RIP140 expression significantly alters markers of mitochondrial content in skeletal muscle but not the brain.

View Article and Find Full Text PDF

Objective: The aims of the present study were to determine in healthy animals if 1) acute exercise stimulated traditional exercise signaling pathways in the cortex and striatum, and 2) if chronic exercise training increased the oxidative capacity of these brain regions.

Methods: Male C57BL/6 mice were left sedentary, acutely exercised for 15 or 60 min to examine potential signaling cascades activated by exercise, or chronically exercise for 4 wk to examine the impact of prolonged training. The cortex and striatum were analyzed for changes in the phosphorylation of AMPK, CAMKII, ERK1/2, and P38 with acute exercise, or markers of mitochondrial protein content, mtDNA copy number, and mitochondrial respiration with chronic exercise.

View Article and Find Full Text PDF

Mitochondrial ADP transport may represent a convergence point unifying two prominent working models for the development of insulin resistance, as reactive lipids (specifically palmitoyl-CoA [P-CoA]) can inhibit ADP transport and subsequently increase mitochondrial reactive oxygen species emissions. In the current study, we aimed to determine if exercise training in humans diminished P-CoA attenuation of mitochondrial ADP respiratory sensitivity. Six weeks of exercise training increased whole-body glucose homeostasis and skeletal muscle Akt signaling and reduced markers of oxidative stress without reducing maximal mitochondrial H2O2 emissions.

View Article and Find Full Text PDF

Key Points: Mitochondrial function in the brain is traditionally assessed through analysing respiration in isolated mitochondria, a technique that possesses significant tissue and time requirements while also disrupting the cooperative mitochondrial reticulum. We permeabilized brain tissue in situ to permit analysis of mitochondrial respiration with the native mitochondrial morphology intact, removing the need for isolation time and minimizing tissue requirements to ∼2 mg wet weight. The permeabilized brain technique was validated against the traditional method of isolated mitochondria and was then further applied to assess regional variation in the mouse brain with ischaemia-reperfusion injuries.

View Article and Find Full Text PDF

In this closing article, we first introduce the topics of dust and ice chemistry and their role in astrochemistry. We then discuss the invited contributions and discussions concerning these topics, dividing the papers into groupings by subject: (i) astronomical sources, (ii) basic properties of dust, (iii) processes on bare grains, (iv) processes on and in ice mantles, and (v) complex organic molecules. A sample of poster contributions is included in the text, when they complement the discussion.

View Article and Find Full Text PDF

The birth environment of the Sun will have influenced the physical and chemical structure of the pre-solar nebula, including the attainable chemical complexity reached in the disk, important for prebiotic chemistry. The formation and distribution of complex organic molecules (COMs) in a disk around a T Tauri star is investigated for two scenarios: (i) an isolated disk, and (ii) a disk irradiated externally by a nearby massive star. The chemistry is calculated along the accretion flow from the outer disk inwards using a comprehensive network which includes gas-phase reactions, gas-grain interactions, and thermal grain-surface chemistry.

View Article and Find Full Text PDF

The therapeutic use of polyunsaturated fatty acids (PUFA) in preserving insulin sensitivity has gained interest in recent decades; however, the roles of linoleic acid (LA) and α-linolenic acid (ALA) remain poorly understood. We investigated the efficacy of diets enriched with either LA or ALA on attenuating the development of insulin resistance (IR) in obesity. Following a 12-wk intervention, LA and ALA both prevented the shift toward an IR phenotype and maintained muscle-specific insulin sensitivity otherwise lost in obese control animals.

View Article and Find Full Text PDF

Calcium/calmodulin-dependent protein kinase (CaMK) activation induces mitochondrial biogenesis in response to increasing cytosolic calcium concentrations. Calcium leak from the ryanodine receptor (RyR) is regulated by reactive oxygen species (ROS), which is increased with high-fat feeding. We examined whether ROS-induced CaMKII-mediated signaling induced skeletal muscle mitochondrial biogenesis in selected models of lipid oversupply.

View Article and Find Full Text PDF