Publications by authors named "Eric Gomes"

Recent research has extensively covered the effects of climate change factors, such as elevated CO2, rising temperatures and water deficit, on grapevine (Vitis spp.) biology. However, the assessment of the impacts of multiple climate change-related stresses on this crop remains complex due to the large number of interactive effects among environmental factors and the regulatory mechanisms that underlie these effects.

View Article and Find Full Text PDF

Anthocyanin composition is responsible for the red colour of grape berries and wines, and contributes to their organoleptic quality. However, anthocyanin biosynthesis is under genetic, developmental and environmental regulation, making its targeted fine-tuning challenging. We constructed a mechanistic model to simulate the dynamics of anthocyanin composition throughout grape ripening in Vitis vinifera, employing a consensus anthocyanin biosynthesis pathway.

View Article and Find Full Text PDF
Article Synopsis
  • - Greenhouse gas emissions are causing a climate crisis that needs urgent action to reduce their harmful impacts on life on Earth.
  • - Agriculture and land use account for about 25% of total GHG emissions, making it crucial for plant scientists to lead efforts in sustainable practices.
  • - The PlantACT! initiative outlines a strategic plan for plant scientists to develop solutions in various time frames and identifies necessary changes in personal behavior, institutions, and funding to support these efforts.
View Article and Find Full Text PDF

To optimize vineyard management practices to adapt viticulture to climate change, knowledge of the regulation mechanism of metabolite accumulation under carbon source limitation and abscisic acid (ABA) application in grapes should be deepened. Here, carbon source limitations were imposed by reducing leaf area from 12 to 2 leaves per vine (at pea sized stage, - 2L-P; or one week prior to veraison - 2L-V) and phloem girdling between the second and third leaf from bottom to top (one week prior to veraison - 12L-girdling) were compared for their effects on berry composition. All three modalities significantly reduced sugar, anthocyanin and ABA content in comparison with berries under sufficient carbon supply (12 leaves per vine - 12L), with 2L-V being the greatest.

View Article and Find Full Text PDF

The exploration of the grapevine ( L.) intra-varietal diversity can be an interesting approach for the adaptation of viticulture to climate change. We evaluated the response of four Tempranillo clones to simulated year-2100-expected air temperature, CO, and relative humidity (RH) conditions: climate change (CC; 28 °C/18 °C, 700 μmol mol CO, and 35%/53% RH) current situation conditions (CS; 24 °C/14 °C, 400 μmol mol CO, and 45%/63% RH), under two irrigation regimes, "well-watered" (WW) "water deficit" (WD).

View Article and Find Full Text PDF

White-fleshed grape cv. 'Gamay' and its two teinturier variants presented distinct spatial-temporal accumulation of anthocyanins, with uncoupled accumulation of sugars and anthocyanins in 'Gamay Fréaux'. In most red grape cultivars, anthocyanins accumulate exclusively in the berry skin, while 'teinturier' cultivars also accumulate anthocyanins in the pulp.

View Article and Find Full Text PDF

Adaptation of viticulture to climate change includes exploration of new geographical areas, new training systems, new management practices, or new varieties, both for rootstocks and scions. Molecular tools can be defined as molecular approaches used to study DNAs, RNAs, and proteins in all living organisms. We present here the current knowledge about molecular tools and their potential usefulness in three aspects of grapevine adaptation to the ongoing climate change.

View Article and Find Full Text PDF

The trade-off between yield and quality, a major problem for the production of fleshy fruits, involves fruit expansive growth and sugar metabolism. Here we developed an integrative model by coupling a biophysical model of fleshy fruit growth processes, including water and carbon fluxes and organ expansion, with an enzyme-based kinetic model of sugar metabolism to better understand the interactions between these two processes. The integrative model was initially tested on tomato fruit, a model system for fleshy fruit.

View Article and Find Full Text PDF

Tempranillo is a grapevine ( L.) variety extensively used for world wine production which is expected to be affected by environmental parameters modified by ongoing global climate changes, i.e.

View Article and Find Full Text PDF

Asian and American species possess a strong potential for crossbreeding programs, owing to their several resistance properties. Stilbenes are phenolic compounds present in grape berries and are well-known for their main role as phytoalexins and resistance to biotic stresses in plants. However, their identification and quantification in grape berries from wild remains unexplored.

View Article and Find Full Text PDF

Background: Grapevine is a crop of major economic importance, yet little is known about the regulation of shoot development in grapevine or other perennial fruits crops. Here we combine genetic and genomic tools to identify candidate genes regulating shoot development in Vitis spp.

Results: An F2 population from an interspecific cross between V.

View Article and Find Full Text PDF

Climate change scenarios predict an increase in mean air temperatures and in the frequency, intensity, and length of extreme temperature events in many wine-growing regions worldwide. Because elevated temperature has detrimental effects on berry growth and composition, it threatens the economic and environmental sustainability of wine production. Using Cabernet Sauvignon fruit-bearing cuttings, we investigated the effects of high temperature (HT) on grapevine berries through a label-free shotgun proteomic analysis coupled to a complementary metabolomic study.

View Article and Find Full Text PDF

Although fleshy fruit species are economically important worldwide and crucial for human nutrition, the regulation of their fruit metabolism remains to be described finely. Fruit species differ in the origin of the tissue constituting the flesh, duration of fruit development, coordination of ripening changes (climacteric vs. non-climacteric type) and biochemical composition at ripeness is linked to sweetness and acidity.

View Article and Find Full Text PDF

Low temperature is a critical environmental factor limiting plant productivity, especially in northern vineyards. To clarify the impact of this stress on grapevine flower, we used the Vitis array based on Roche-NimbleGen technology to investigate the gene expression of flowers submitted to a cold night. Our objectives were to identify modifications in the transcript levels after stress and during recovery.

View Article and Find Full Text PDF
Article Synopsis
  • Anthocyanin biosynthesis in plants is influenced by environmental factors like light and water, as well as nutrient availability, particularly nitrogen levels.
  • Research has shown that low nitrogen can boost anthocyanin production, suggesting that a high carbon-to-nitrogen ratio may lead to an excess of energy in plant cells.
  • Using grapevine cells as a model, a study demonstrated that under low nitrogen conditions, central metabolic fluxes decreased while those in the flavonoid pathway increased, supporting the idea that anthocyanin production helps plants manage energy excess.
View Article and Find Full Text PDF

The intra-varietal genetic diversity of grapevine (Vitis vinifera L.) may be exploited to maintain grape quality under future warm conditions, which may alter grape berry development and composition. The present study assesses the effects of elevated temperature on the development of berry, grape composition and anthocyanins:sugars ratio of thirteen clones of V.

View Article and Find Full Text PDF

Amino acid composition of the grape berry at harvest is important for wine making. The present study investigates the complex interplay between tissue, cultivar and light conditions that determine berry amino acid content. Twenty amino acids were assessed in the berry skin and pulp of two grape cultivars (Gamay Noir and Gamay Fréaux), grown under either light exposure or cluster shading conditions.

View Article and Find Full Text PDF

Reproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT).

View Article and Find Full Text PDF

The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set.

View Article and Find Full Text PDF

Background: Volatile thiols largely contribute to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless, non-volatile precursors found in the berries and the must.

View Article and Find Full Text PDF

The soluble sugar concentration of fleshy fruit is a key determinant of fleshy fruit quality. It affects directly the sweetness of fresh fruits and indirectly the properties of processed products (e.g.

View Article and Find Full Text PDF

Grapevine is a perennial crop often cultivated by grafting a scion cultivar on a suitable rootstock. Rootstocks influence scions, particularly with regard to water uptake and vigor. Therefore, one of the possibilities to adapt viticulture to the extended drought stress periods is to select rootstocks conferring increased tolerance to drought.

View Article and Find Full Text PDF

Methoxypyrazines (MP) constitute a large family of compounds that contribute to the vegetative varietal aroma of many grapevine varieties and wines. The berry content in 2-methoxy-3-isobutylpyrazine (IBMP), a major MP reminiscent of green-pepper aroma, can be influenced by environmental factors or cultural practices such as water status or mineral nutrition. To date, no study has investigated a possible direct effect of nitrogen (N) on IBMP synthesis without possible interference from water status and vigor variations.

View Article and Find Full Text PDF

Light exclusion reduces the concentration and modifies the composition of grape anthocyanins, by altering the expression of genes involved in anthocyanin biosynthesis and transport, in a cultivar- and tissue-specific manner. Unlike most grapes, teinturier grapes accumulate anthocyanins both in skin and flesh. However, the concentration and composition of anthocyanins in both tissues differ, providing a valuable system to study tissue-specific regulation of anthocyanin synthesis.

View Article and Find Full Text PDF

Grape berry composition mainly consists of primary and secondary metabolites. Both are sensitive to environment and viticultural management. As a consequence, climate change can affect berry composition and modify wine quality and typicity.

View Article and Find Full Text PDF