ACS Appl Mater Interfaces
October 2024
It is generally accepted that for safe use of neural interface electrodes, irreversible faradaic reactions should be avoided in favor of capacitive charge injection. However, in some cases, faradaic reactions can be desirable for controlling specific (electro)physiological outcomes or for biosensing purposes. This study aims to systematically map the basic faradaic reactions occurring at bioelectronic electrode interfaces.
View Article and Find Full Text PDFNeurostimulation employing photoactive organic semiconductors offers an appealing alternative to conventional techniques, enabling targeted action and wireless control through light. In this study, organic electrolytic photocapacitors (OEPC) are employed to investigate the effects of light-controlled electric stimulation on neuronal networks in vitro and in vivo. The interactions between the devices and biological systems are characterized.
View Article and Find Full Text PDFProducing realistic numerical models of neurostimulation electrodes in contact with the electrolyte and tissue, for use in time-domain finite element method simulations while maintaining a reasonable computational burden remains a challenge. We aim to provide a straightforward experimental-theoretical hybrid approach for common electrode materials (Ti, TiN, ITO, Au, Pt, IrOx) that are relevant to the research field of bioelectronics, along with all the information necessary to replicate our approach in arbitrary geometry for real-life experimental applications.We used electrochemical impedance spectroscopy (EIS) to extract the electrode parameters in the AC regime under different DC biases.
View Article and Find Full Text PDFThe wireless transfer of power for driving implantable neural stimulation devices has garnered significant attention in the bioelectronics field. This study explores the potential of photovoltaic (PV) power transfer, utilizing tissue-penetrating deep-red light-a novel and promising approach that has received less attention compared to traditional induction or ultrasound techniques. Our objective is to critically assess key parameters for directly powering neurostimulation electrodes with PVs, converting light impulses into neurostimulation currents.
View Article and Find Full Text PDFPlatinum is the most widespread electrode material used for implantable biomedical and neuroelectronic devices, motivating exploring ways to improve its performance and understand its fundamental properties. Using reactive magnetron sputtering, PtO is prepared, which upon partial reduction yields a porous thin-film form of platinum with favorable properties, notably record-low impedance values outcompeting other reports for platinum-based electrodes. It is established that its high electrochemical capacitance scales with thickness, in the way of volumetric capacitor materials like IrO and poly(3,4-ethylenedioxythiophene), PEDOT.
View Article and Find Full Text PDFOrganic electrochemical transistors (OECTs) have emerged as promising candidates for various fields, including bioelectronics, neuromorphic computing, biosensors, and wearable electronics. OECTs operate in aqueous solutions, exhibit high amplification properties, and offer ion-to-electron signal transduction. The OECT channel consists of a conducting polymer, with PEDOT:PSS receiving the most attention to date.
View Article and Find Full Text PDFRecent advances in light-responsive materials enabled the development of devices that can wirelessly activate tissue with light. Here it is shown that solution-processed organic heterojunctions can stimulate the activity of primary neurons at low intensities of light via photochemical reactions. The p-type semiconducting polymer PDCBT and the n-type semiconducting small molecule ITIC (a non-fullerene acceptor) are coated on glass supports, forming a p-n junction with high photosensitivity.
View Article and Find Full Text PDFBackground: Peripheral nerve stimulation is used in both clinical and fundamental research for therapy and exploration. At present, non-invasive peripheral nerve stimulation still lacks the penetration depth to reach deep nerve targets and the stimulation focality to offer selectivity. It is therefore rarely employed as the primary selected nerve stimulation method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2023
Organic electrochemical transistors (OECTs) are promising building blocks for bioelectronic devices such as sensors and neural interfaces. While the majority of OECTs use simple planar geometry, there is interest in exploring how these devices operate with much shorter channels on the submicron scale. Here, we show a practical route toward the minimization of the channel length of the transistor using traditional photolithography, enabling large-scale utilization.
View Article and Find Full Text PDFReactive oxygen species (ROS) are an integral part of many anticancer therapies. Fenton-like processes involving reactions of peroxides with transition metal ions are a particularly potent and tunable subset of ROS approaches. Precise on-demand dosing of the Fenton reaction is an area of great interest.
View Article and Find Full Text PDFNongenetic optical control of neurons is a powerful technique to study and manipulate the function of the nervous system. This research has benchmarked the performance of organic electrolytic photocapacitor (OEPC) optoelectronic stimulators at the level of single mammalian cells: human embryonic kidney (HEK) cells with heterologously expressed voltage-gated K channels and hippocampal primary neurons. OEPCs act as extracellular stimulation electrodes driven by deep red light.
View Article and Find Full Text PDFVagus nerve stimulation (VNS) is a promising approach for the treatment of a wide variety of debilitating conditions, including autoimmune diseases and intractable epilepsy. Much remains to be learned about the molecular mechanisms involved in vagus nerve regulation of organ function. Despite an abundance of well-characterized rodent models of common chronic diseases, currently available technologies are rarely suitable for the required long-term experiments in freely moving animals, particularly experimental mice.
View Article and Find Full Text PDFElectrical stimulation of peripheral nerves is a cornerstone of bioelectronic medicine. Effective ways to accomplish peripheral nerve stimulation (PNS) noninvasively without surgically implanted devices are enabling for fundamental research and clinical translation. Here, it is demonstrated how relatively high-frequency sine-wave carriers (3 kHz) emitted by two pairs of cutaneous electrodes can temporally interfere at deep peripheral nerve targets.
View Article and Find Full Text PDF. Electric stimulation delivered by implantable electrodes is a key component of neural engineering. While factors affecting long-term stability, safety, and biocompatibility are a topic of continuous investigation, a widely-accepted principle is that charge injection should be reversible, with no net electrochemical products forming.
View Article and Find Full Text PDFOptically driven electronic neuromodulation devices are a novel tool in basic research and offer new prospects in medical therapeutic applications. Optimal operation of such devices requires efficient light capture and charge generation, effective electrical communication across the device's bioelectronic interface, conformal adhesion to the target tissue, and mechanical stability of the device during the lifetime of the implant-all of which can be tuned by spatial structuring of the device. We demonstrate a 3D structured opto-bioelectronic device-an organic electrolytic photocapacitor spatially designed by depositing the active device layers on an inverted micropyramid-shaped substrate.
View Article and Find Full Text PDFThe nervous system poses a grand challenge for integration with modern electronics and the subsequent advances in neurobiology, neuroprosthetics, and therapy which would become possible upon such integration. Due to its extreme complexity, multifaceted signaling pathways, and ∼1 kHz operating frequency, modern complementary metal oxide semiconductor (CMOS) based electronics appear to be the only technology platform at hand for such integration. However, conventional CMOS-based electronics rely exclusively on electronic signaling and therefore require an additional technology platform to translate electronic signals into the language of neurobiology.
View Article and Find Full Text PDFImplantable devices for the wireless modulation of neural tissue need to be designed for reliability, safety and reduced invasiveness. Here we report chronic electrical stimulation of the sciatic nerve in rats by an implanted organic electrolytic photocapacitor that transduces deep-red light into electrical signals. The photocapacitor relies on commercially available semiconducting non-toxic pigments and is integrated in a conformable 0.
View Article and Find Full Text PDFH O plays a significant role in a range of physiological processes where it performs vital tasks in redox signaling. The sensitivity of many biological pathways to H O opens up a unique direction in the development of bioelectronics devices to control levels of reactive-oxygen species (ROS). Here a microfabricated ROS modulation device that relies on controlled faradaic reactions is presented.
View Article and Find Full Text PDFFor decades electrical stimulation has been used in neuroscience to investigate brain networks and been deployed clinically as a mode of therapy. Classically, all methods of electrical stimulation require implanted electrodes to be connected in some manner to an apparatus which provides power for the stimulation itself..
View Article and Find Full Text PDFUnderstanding how the retina converts a natural image or an electrically stimulated one into neural firing patterns is the focus of on-going research activities., the retina can be readily investigated using multi electrode arrays (MEAs). However, MEA recording and stimulation from an intact retina (in the eye) has been so far insufficient.
View Article and Find Full Text PDFThere is a broad and growing interest in Bioelectronic Medicine, a dynamic field that continues to generate new approaches in disease treatment. The fourth bioelectronic medicine summit "Technology targeting molecular mechanisms" took place on September 23 and 24, 2020. This virtual meeting was hosted by the Feinstein Institutes for Medical Research, Northwell Health.
View Article and Find Full Text PDFOrganic semiconductors have recently emerged as promising catalytic materials for oxygen reduction to hydrogen peroxide, HO, a chemical of great importance in industry as well as biology. While examples of organic semiconductor-mediated photocatalytic and electrocatalytic processes for HO production become more numerous and improve in performance, fundamental understanding of the reaction mechanisms at play have been explored far less. The aim of the present work is to computationally test hypotheses of how selective oxygen reduction to HO generally occurs on carbonyl dyes and pigments.
View Article and Find Full Text PDFOptoelectronic neurostimulation is a promising, minimally invasive treatment modality for neuronal damage, in particular for patients with traumatic brain injury. In this work, a newly developed optoelectronic device, a so-called photocap, based on light-activated organic semiconductor structures with high spatial and temporal resolution is investigated. To prove and verify the feasibility of this new technology, a mathematical model was developed, simulating the electrical response of excitable cells to photocap stimulation.
View Article and Find Full Text PDF