Publications by authors named "Eric Giraud"

Effector proteins secreted via the type III secretion system (T3SS) of nitrogen-fixing rhizobia are key determinants of symbiotic compatibility in legumes. Previous report revealed that the T3SS of Bradyrhizobium sp. DOA9 plays negative effects on Arachis hypogaea symbiosis.

View Article and Find Full Text PDF

Some Bradyrhizobium strains nodulate certain Aeschynomene species independently of Nod factors, but thanks to their type III secretion system (T3SS). While different T3 effectors triggering nodulation (ErnA and Sup3) have been identified, the plant signalling pathways they activate remain unknown. Here, we explored the intraspecies variability in T3SS-triggered nodulation within Aeschynomene evenia and investigated transcriptomic responses that occur during this symbiosis.

View Article and Find Full Text PDF

Cyst nematode parasites disrupt beneficial associations of crops with rhizobia and mycorrhiza. Chen et al. discovered the mechanism and demonstrated that the soybean cyst nematode Heterodera glycines secretes a chitinase that destroys key symbiotic signals from the microbial symbionts.

View Article and Find Full Text PDF

The functional significance of genes that encode two sigma factors in the sp. strain DOA9 has been reported to affect colony formation, root nodulation characteristics, and symbiotic interactions with mutant strains are defective in cellular surface polysaccharide (CSP) production compared with the wild-type (WT) strain, and they accordingly exhibit smaller colonies and diminished symbiotic effectiveness. To gain deeper insights into the changes in CSP composition and the nodules of mutants, we employed synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy and X-ray absorption spectroscopy.

View Article and Find Full Text PDF

The establishment of the rhizobium-legume symbiosis is generally based on plant perception of Nod factors (NFs) synthesized by the bacteria. However, some Bradyrhizobium strains can nodulate certain legume species, such as Aeschynomene spp. or Glycine max, independently of NFs, and via two different processes that are distinguished by the necessity or not of a type III secretion system (T3SS).

View Article and Find Full Text PDF

The ability of to grow on methanol as the sole carbon and energy source has been the object of intense research activity. Unquestionably, the bacterial cell envelope serves as a defensive barrier against such an environmental stressor, with a decisive role played by the membrane lipidome, which is crucial for stress resistance. However, the chemistry and the function of the main constituent of the outer membrane, the lipopolysaccharide (LPS), is still undefined.

View Article and Find Full Text PDF

RpoN is an alternative sigma factor (sigma 54) that recruits the core RNA polymerase to promoters of genes. In bacteria, RpoN has diverse physiological functions. In rhizobia, RpoN plays a key role in the transcription of nitrogen fixation () genes.

View Article and Find Full Text PDF

Intensive research on nitrogen-fixing symbiosis in two model legumes has uncovered the molecular mechanisms, whereby rhizobial Nod factors activate a plant symbiotic signaling pathway that controls infection and nodule organogenesis. In contrast, the so-called Nod-independent symbiosis found between Aeschynomene evenia and photosynthetic bradyrhizobia, which does not involve Nod factor recognition nor infection thread formation, is less well known. To gain knowledge on how Nod-independent symbiosis is established, we conducted a phenotypic and molecular characterization of A.

View Article and Find Full Text PDF

To suppress plant immunity and promote the intracellular infection required for fixing nitrogen for the benefit of their legume hosts, many rhizobia use type III secretion systems (T3SSs) that deliver effector proteins (T3Es) inside host cells. As reported for interactions between pathogens and host plants, the immune system of legume hosts and the cocktail of T3Es secreted by rhizobia determine the symbiotic outcome. If they remain undetected, T3Es may reduce plant immunity and thus promote infection of legumes by rhizobia.

View Article and Find Full Text PDF

Many strains are able to establish a Nod factor-independent symbiosis with the leguminous plant by the use of a type III secretion system (T3SS). Recently, an important advance in the understanding of the molecular factors supporting this symbiosis has been achieved by the in silico identification and functional characterization of 27 putative T3SS effectors (T3Es) of ORS3257. In the present study, we experimentally extend this catalog of T3Es by using a multi-omics approach.

View Article and Find Full Text PDF

The Bradyrhizobium sp. strain ORS285 is able to establish a nitrogen-fixing symbiosis with both Nod factor (NF) dependent and NF-independent Aeschynomene species. Here, we have studied the growth characteristics and symbiotic interaction of a glutamate synthase (GOGAT; gltD::Tn5) mutant of Bradyrhizobium ORS285.

View Article and Find Full Text PDF

The Bradyrhizobium vignae strain ORS3257 is an elite strain recommended for cowpea inoculation in Senegal. This strain was recently shown to establish symbioses on some Aeschynomene species using a cocktail of Type III effectors (T3Es) secreted by the T3SS machinery. In this study, using a collection of mutants in different T3Es genes, we sought to identify the effectors that modulate the symbiotic properties of ORS3257 in three Vigna species (V.

View Article and Find Full Text PDF

Among legumes (Fabaceae) capable of nitrogen-fixing nodulation, several Aeschynomene spp. use a unique symbiotic process that is independent of Nod factors and infection threads. They are also distinctive in developing root and stem nodules with photosynthetic bradyrhizobia.

View Article and Find Full Text PDF

Legume plants form a root-nodule symbiosis with rhizobia. This symbiosis establishment generally relies on rhizobium-produced Nod factors (NFs) and their perception by leguminous receptors (NFRs) that trigger nodulation. However, certain rhizobia hijack leguminous nodulation signalling via their type III secretion system, which functions in pathogenic bacteria to deliver effector proteins into host cells.

View Article and Find Full Text PDF

Bradyrhizobium ORS285 forms a nitrogen-fixating symbiosis with both Nod factor (NF)-dependent and NF-independent spp. The ORS285 gene encodes for a putative bifunctional enzyme with 3,4-dihydroxybutanone phosphate (3,4-DHBP) synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps in the riboflavin biosynthesis pathway. In this study, we show that inactivating the gene does not cause riboflavin auxotrophy under free-living conditions and that, as shown for RibBAs from other bacteria, the GTP cyclohydrolase II domain has no enzymatic activity.

View Article and Find Full Text PDF

Acetobacter pasteurianus, a member of the Alphaproteobacteria, is an acetic acid-producing bacterium present on sugar-rich substrates such as such as fruits, flowers and vegetables and traditionally used in the production of fermented food. The preferred living habitat associated with acid conditions makes the structure of the bacterial cell wall interesting to study, due to expected uncommon features. We have used a combination of chemical, analytical and NMR spectroscopy approaches to define the complete structure of the core oligosaccharide from A.

View Article and Find Full Text PDF

are abundant soil bacteria and the major symbiont of legumes. The recent availability of genome sequences provides a large source of information for analysis of symbiotic traits. In this study, we investigated the evolutionary dynamics of the nodulation genes () and their relationship with the genes encoding type III secretion systems (T3SS) and their effectors among bradyrhizobia.

View Article and Find Full Text PDF

Several species nodulate the leguminous plant in a type III secretion system-dependent manner, independently of Nod factors. To date, the underlying molecular determinants involved in this symbiotic process remain unknown. To identify the rhizobial effectors involved in nodulation, we mutated 23 out of the 27 effector genes predicted in strain ORS3257.

View Article and Find Full Text PDF

As inducers of nodulation () genes, flavonoids play an important role in the symbiotic interaction between rhizobia and legumes. However, in addition to the control of expression of genes, many other effects of flavonoids on rhizobial cells have been described. Here, we show that the flavonoid naringenin stimulates the growth of the photosynthetic sp.

View Article and Find Full Text PDF
Article Synopsis
  • * The antimicrobial peptide transporter BclA is crucial for the differentiation of these bacteria into functional forms; without it, rhizobia infect nodule cells but fail to develop fully.
  • * Research on metabolomics and transcriptomics reveals that the transition of rhizobia into bacteroids involves significant metabolic and gene expression changes, highlighting the importance of this symbiosis for the nitrogen cycle and potential benefits for sustainable agriculture.
View Article and Find Full Text PDF

The lateral transfer of symbiotic genes converting a predisposed soil bacteria into a legume symbiont has occurred repeatedly and independently during the evolution of rhizobia. We experimented the transfer of a symbiotic plasmid between Bradyrhizobium strains. The originality of the DOA9 donor is that it harbours a symbiotic mega-plasmid (pDOA9) containing nod, nif and T3SS genes while the ORS278 recipient has the unique property of inducing nodules on some Aeschynomene species in the absence of Nod factors (NFs).

View Article and Find Full Text PDF

Here, we report the complete genome sequence of Bradyrhizobium sp. strain ORS3257, which forms efficient symbioses with cowpea, peanut, or groundnut. These genomic data will be useful to identify genes associated with symbiotic performance and host compatibility on several legumes, including Aeschynomene species, with which a Nod-independent type III secretion system (T3SS)-dependent symbiosis can be established.

View Article and Find Full Text PDF

This study supports the idea that the evolution of type III secretion system (T3SS) is one of the factors that controls Vigna radiata-bradyrhizobia symbiosis. Based on phylogenetic tree data and gene arrangements, it seems that the T3SSs of the Thai bradyrhizobial strains SUTN9-2, DOA1, and DOA9 and the Senegalese strain ORS3257 may share the same origin. Therefore, strains SUTN9-2, DOA1, DOA9, and ORS3257 may have evolved their T3SSs independently from other bradyrhizobia, depending on biological and/or geological events.

View Article and Find Full Text PDF