Several odontocete species depredate catch and bait from fishing gear, resulting in their bycatch and causing substantial economic costs. There are no known mitigation methods for odontocete depredation in pelagic longline fisheries that are effective, do not harm odontocetes and are commercially viable. Understanding odontocetes' depredation strategies can contribute to mitigating this human-wildlife conflict.
View Article and Find Full Text PDFMarine megafauna exposed to fisheries bycatch belong to some of the most threatened taxonomic groups and include apex and mesopredators that contribute to ecosystem regulation. Fisheries bycatch is a major threat to the conservation of albatrosses, large petrels and other pelagic seabirds. Using data sourced from a fisheries electronic monitoring system, we assessed the effects of the time-of-day and relative depth of fishing on seabird and target species catch rates for a Pacific Ocean pelagic longline fishery that targets albacore tuna with an apparently high albatross bycatch rate.
View Article and Find Full Text PDFApex and mesopredators such as elasmobranchs are important for maintaining ocean health and are the focus of conservation efforts to mitigate exposure to fishing and other anthropogenic hazards. Quantifying fishing mortality components such as at-vessel mortality (AVM) is necessary for effective bycatch management. We assembled a database for 61 elasmobranch species and conducted a global meta-synthesis to estimate pelagic longline AVM rates.
View Article and Find Full Text PDFUnlabelled: Marine population modeling, which underpins the scientific advice to support fisheries interventions, is an active research field with recent advancements to address modern challenges (e.g., climate change) and enduring issues (e.
View Article and Find Full Text PDFFisheries bycatch threatens the viability of some seabird populations and reduces fishing efficiency. Albatross bycatch in a US North Pacific tuna longline fishery has increased over the past decade and now exceeds 1000 annual captures. Seabirds interacting with this fishery reach hooks at depths up to 1 m.
View Article and Find Full Text PDFDerelict abandoned, lost and discarded fishing gear have profound adverse effects. We assessed gear-specific relative risks from derelict gear to rank-order fishing methods based on: derelict gear production rates, gear quantity indicators of catch weight and fishing grounds area, and adverse consequences from derelict gear. The latter accounted for ghost fishing, transfer of microplastics and toxins into food webs, spread of invasive alien species and harmful microalgae, habitat degradation, obstruction of navigation and in-use fishing gear, and coastal socioeconomic impacts.
View Article and Find Full Text PDFMarine protected areas (MPAs) can contribute to protecting biodiversity and managing ocean activities, including fishing. There is, however, limited evidence of ecological responses to blue water MPAs. We conducted the first comprehensive evaluation of impacts on fisheries production and ecological responses to pelagic MPAs of the Pacific Remote Islands Marine National Monument.
View Article and Find Full Text PDFCapture in global pelagic longline fisheries threatens the viability of some seabird populations. The Hawaii longline tuna fishery annually catches hundreds of seabirds, primarily Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses.
View Article and Find Full Text PDFBycatch in longline fisheries threatens the viability of some seabird populations. The Hawaii longline swordfish fishery reduced seabird captures by an order of magnitude primarily through mitigating bycatch during setting. Now, 75% of captures occur during hauling.
View Article and Find Full Text PDFQuantitative scenarios are coming of age as a tool for evaluating the impact of future socioeconomic development pathways on biodiversity and ecosystem services. We analyze global terrestrial, freshwater, and marine biodiversity scenarios using a range of measures including extinctions, changes in species abundance, habitat loss, and distribution shifts, as well as comparing model projections to observations. Scenarios consistently indicate that biodiversity will continue to decline over the 21st century.
View Article and Find Full Text PDFHundreds of thousands of seabirds are killed each year as bycatch in longline fisheries. Seabirds are predominantly caught during line setting but bycatch is generally recorded during line hauling, many hours after birds are caught. Bird loss during this interval may lead to inaccurate bycatch information.
View Article and Find Full Text PDFMany populations of marine megafauna, including seabirds, sea turtles, marine mammals, and elasmobranchs, have declined in recent decades due largely to anthropogenic mortality. To successfully conserve these long-lived animals, efforts must be prioritized according to feasibility and the degree to which they address threats with the highest relative impacts on population dynamics. Recently, Wilcox and Donlan (2007, Frontiers in Ecology and the Environment) and Donlan and Wilcox (2008, Biological Invasions) proposed a conservation strategy of "compensatory mitigation" in which fishing industries offset bycatch of seabirds and sea turtles by funding eradication of invasive mammalian predators from the terrestrial reproductive sites of these marine animals.
View Article and Find Full Text PDFWe predict the decadal change in position of three American Samoa mangroves from analysis of a time series of remotely sensed imagery, a geographic information system, tide gauge data, and projections for change in sea-level relative to the mangrove surface. Accurate predictions of changes to coastal ecosystem boundaries, including in response to projected relative sea-level rise, enable advanced planning to minimize and offset anticipated losses and minimize social disruption and cost of reducing threats to coastal development and human safety. The observed mean landward migration of three mangroves' seaward margins over four decades was 25, 64, and 72 mma(-1), 12 to 37 times the observed relative sea-level rise rate.
View Article and Find Full Text PDF