Human 3D liver microtissues/spheroids are powerful models to study drug-induced liver injury (DILI) but the small number of cells per spheroid limits the models' usefulness to study drug metabolism. In this work, we scale up the number of spheroids on both a plate and a standardized organ-chip platform by factor 100 using a basic method which requires only limited technical expertise. We successfully generated up to 100 spheroids using polymer-coated microwells in a 96-well plate (= liver-plate) or organ-chip (= liver-chip).
View Article and Find Full Text PDFDespite increased awareness of aldehyde oxidase (AO) as a major drug-metabolising enzyme, predicting the pharmacokinetics of its substrates remains challenging. Several drug candidates have been terminated due to high clearance, which were subsequently discovered to be AO substrates. Even retrospective extrapolation of human clearance, from models more sensitive to AO activity, often resulted in underprediction.
View Article and Find Full Text PDFPurpose: More accurate prediction of the extent of drug brain exposure in early drug discovery and understanding potential species differences could help to guide medicinal chemistry and avoid unnecessary animal studies. Hence, the aim of the current study was to validate the use of a P-gp transfected LLC-PK1 model to predict the unbound brain-to-plasma concentration ratio (Kp) in rats and humans.
Methods: MOCK-, Mdr1a- and MDR1-transfected LLC-PK1 monolayers were applied in a transwell setup to quantify the bidirectional transport for 12 specific P-gp substrates, 48 UCB drug discovery compounds, 11 compounds with reported rat in situ brain perfusion data and 6 compounds with reported human Kp values.
Early assessment of metabolism pathways of new chemical entities guides the understanding of drug-drug interactions. Selective enzyme inhibitors are indispensable in CYP reaction phenotyping. The most commonly applied CYP2C19 inhibitor, omeprazole, lacks selectivity.
View Article and Find Full Text PDFAims: To build and verify a physiologically based pharmacokinetic (PBPK) model for radiprodil in adults and link this to a pharmacodynamic (PD) receptor occupancy (RO) model derived from in vitro data. Adapt this model to the paediatric population and predict starting and escalating doses in infants based on RO. Use the model to guide individualized dosing in a clinical trial in 2- to 14-month-old children with infantile spasms.
View Article and Find Full Text PDFSeletalisib is an orally bioavailable selective inhibitor of phosphoinositide 3-kinase delta (PI3Kδ) in clinical development for the treatment of immune-mediated inflammatory diseases. The present study investigated the role of P-gp in seletalisib disposition, especially brain distribution, and the associated risks of interactions. Seletalisib was found to be actively transported by rodent and human P-gp in vitro (transfected LLC-PK1 cells; K of ca.
View Article and Find Full Text PDF