Since the early years of the twentieth century, the biological consequences of exposure to ionizing radiation have been attributed solely to mutational DNA damage or cell death induced in irradiated cells at the time of exposure. However, numerous observations have been at variance with this dogma. In the 1950s, attention was drawn to abscopal effects in areas of the body not directly irradiated.
View Article and Find Full Text PDFRadiation-induced bystander and abscopal effects, in which DNA damage is produced by inter-cellular communication, indicate mechanisms of generating damage in addition to those observed in directly irradiated cells. In this article, we show that the bone marrow of irradiated p53(+/+) mice, but not p53(-/-) mice, produces the inflammatory pro-apoptotic cytokines FasL and TNF-α able to induce p53-independent apoptosis in vitro in nonirradiated p53(-/-) bone marrow cells. Using a congenic sex-mismatch bone marrow transplantation protocol to generate chimeric mice, p53(-/-) hemopoietic cells functioning in a p53(+/+) bone marrow stromal microenvironment exhibited greater cell killing after irradiation than p53(-/-) hemopoietic cells in a p53(-/-) microenvironment.
View Article and Find Full Text PDFNontargeted effects that result in ongoing cellular and tissue damage show genotype-dependency in murine models with CBA/Ca, but not C57BL/6, exhibiting sensitivity to induced genomic instability. In vivo, radiation exposure is associated with genotype-dependent macrophage activation, and these cells are a source of bystander signaling involving cytokines and reactive oxygen and nitrogen species. The mechanisms responsible for macrophage activation and production of damaging bystander signals after irradiation are unclear.
View Article and Find Full Text PDFPurpose: A study of irradiated (0.25-2 Gy) murine bone marrow has investigated the relationships between apoptotic responses of cells exposed in vivo and in vitro and between in vivo apoptosis and tissue cytotoxicity.
Materials And Methods: The time course of reduction in bone marrow cellularity in vivo was determined by femoral cell counts and apoptosis measurements obtained using three commonly used assays.
Radiation-induced bystander and abscopal effects, in which DNA damage is produced in nonirradiated cells as a consequence of communication with irradiated cells, indicate mechanisms of inducing damage and cell death additional to the conventional model of deposition of energy in the cell nucleus at the time of irradiation. In this study we show that signals generated in vivo in the bone marrow of mice irradiated with 4 Gy γ rays 18 h to 15 months previously are able to induce DNA damage and apoptosis in nonirradiated bone marrow cells but that comparable signals are not detected at earlier times postirradiation or at doses below 100 mGy. Bone marrow cells of both CBA/Ca and C57BL/6 genotypes exhibit responses to signals produced by either irradiated CBA/Ca or C57BL/6 mice, and the responses are mediated by the cytokines FasL and TNF-α converging on a COX-2-dependent pathway.
View Article and Find Full Text PDFIonizing radiation is unequivocally leukemogenic and carcinogenic, and this is generally attributed to DNA damage arising as a consequence of deposition of energy in the cell nucleus at the time of exposure. However, nontargeted effects, in which DNA damage is produced in nonirradiated cells as a consequence of cell signaling processes, indicate additional mechanisms. Radiation-induced chromosomal instability, a nontargeted effect with the potential to produce pathological consequences, is characterized by an increased rate of chromosome aberrations many generations after the initial insult.
View Article and Find Full Text PDFIonizing radiation is carcinogenic, but genotype is a key determinant of susceptibility. Mutational DNA damage is generally attributed to cause disease, but irradiation also affects multicellular interactions as a result of poorly understood bystander effects that may influence carcinogenic susceptibility. In this study, we show that the bone marrow of irradiated mice will retain the ability to kill hemopoietic clonogenic stem cells and to induce chromosomal instability for up to 3 months after irradiation.
View Article and Find Full Text PDFExposure to high doses of ionizing radiation unequivocally produces adverse health effects including malignancy. At low doses the situation is much less clear, because effects are generally too small to be estimated directly by epidemiology, and extrapolation of risk and establishment of international rules and standards rely on the linear no-threshold (LNT) concept. Claims that low doses are more damaging than would be expected from LNT have been made on the basis of in vitro studies of nontargeted bystander effects and genomic instability, but relevant investigations of primary cells and tissues are limited.
View Article and Find Full Text PDFRadiotherapy is a key treatment option for breast cancer, yet the molecular responses of normal human breast epithelial cells to ionizing radiation are unclear. A murine subcutaneous xenograft model was developed in which nonneoplastic human breast tissue was maintained with the preservation of normal tissue architecture, allowing us to study for the first time the radiation response of normal human breast tissue in situ. Ionizing radiation induced dose-dependent p53 stabilization and p53 phosphorylation, together with the induction of p21(CDKN1A) and apoptosis of normal breast epithelium.
View Article and Find Full Text PDFGenetic lesions and cell death associated with exposure to ionizing radiation have generally been attributed to DNA damage arising as a consequence of deposition of energy in the cell nucleus. However, reports of radiation-induced bystander effects, in which DNA damage is produced in nonirradiated cells as a consequence of communication with irradiated cells, indicate additional mechanisms. At present, most information has been obtained using in vitro systems, and the in vivo significance of bystander factors is not clear.
View Article and Find Full Text PDFA well-established radiobiological paradigm is that the biological effects of ionizing radiation occur in irradiated cells as a consequence of the DNA damage they incur. However, many observations of, so-called, non-targeted effects indicate that genetic alterations are not restricted to directly irradiated cells. Non-targeted effects are responses exhibited by non-irradiated cells that are the descendants of irradiated cells (radiation-induced genomic instability) or by cells that have communicated with irradiated cells (radiation-induced bystander effects).
View Article and Find Full Text PDFThe tumorigenic potential of ionizing radiation has conventionally been attributed to DNA damage in irradiated cells induced at the time of exposure. Recently, there have been an increasing number of reports of damage in unirradiated cells that are either neighbors or descendants of irradiated cells, respectively, regarded as bystander effects and genomic instability and collectively termed nontargeted effects. In this study, we show that descendants of normal murine hemaopoietic clonogenic stem cells exposed to bone marrow-conditioned medium derived from gamma-irradiated mice exhibit chromosomal instability unlike the descendants of directly gamma-irradiated cells.
View Article and Find Full Text PDFIn addition to the directly mutagenic effects of energy deposition in DNA, ionizing radiation is associated with a variety of untargeted and delayed effects that result in ongoing bone marrow damage. Delayed effects are genotype dependent with CBA/Ca mice, but not C57BL/6 mice, susceptible to the induction of damage and also radiation-induced acute myeloid leukemia. Because macrophages are a potential source of ongoing damaging signals, we have determined their gene expression profiles and we show that bone marrow-derived macrophages show widely different intrinsic expression patterns.
View Article and Find Full Text PDFInt J Radiat Biol
March 2008
Purpose: To review studies of radiation responses in the haemopoietic system in the context of radiation-induced chromosomal instability, bystander effects, the influence of the microenvironment and genetic factors.
Conclusions: Blood cells are continuously produced by the proliferation and differentiation of lineage-specific precursor cells that, in turn, are all derived from a small population of multipotential stem cells. The homeostatic regulation of this hemopoietic hierarchy involves multiple regulatory factors and interactions with the tissue microenvironment and responses of the hemopoietic system are major determinants of outcome after exposure to ionizing radiation.
The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that have received damaging signals produced by irradiated cells (radiation-induced bystander effects) or that are the descendants of irradiated cells (radiation-induced genomic instability). Radiation-induced genomic instability is characterized by a number of delayed adverse responses including chromosomal abnormalities, gene mutations and cell death.
View Article and Find Full Text PDFThe mechanisms underlying the unequivocal association between ionizing radiation and the development of leukaemia remain unknown. Recent progress in defining sub-cellular events has contributed to our understanding of the production of genetic lesions in irradiated cells but the importance of tissue effects in response to radiation damage has attracted much less attention. Thus, genetic lesions induced by radiation are considered to result from the deposition of energy in the cell nucleus and the initiating lesion for radiation-induced transformation has been similarly attributed to direct DNA damage.
View Article and Find Full Text PDFRadiation rapidly and persistently alters the soluble and insoluble components of the tissue microenvironment. This affects the cell phenotype, tissue composition and the physical interactions and signalling between cells. These alterations in the microenvironment can contribute to carcinogenesis and alter the tissue response to anticancer therapy.
View Article and Find Full Text PDFTo characterize the mouse bone marrow tissue proteome and investigate the response to radiation damage we took bone marrow before and after 4-Gy gamma-irradiation from mouse strains (C57BL/6 and CBA/Ca) that differ in their short-term and long-term radiation responses and analyzed extracellular proteins by high-resolution 2-DE. Twenty proteins were identified from 71 protein spots in both C57BL/6 and CBA/Ca. We detected significant differences between control and irradiated bone marrow and between genotypes and identified many of the changed proteins by MS.
View Article and Find Full Text PDFA flow cytometric protocol was developed to isolate primary bone marrow resident macrophages (CD11b((-)) Gr-1((-)) F4/80((+))) before and 24 h after 0.5 Gy gamma-irradiation from mouse strains (C57BL/6 and CBA/Ca) that exhibit significant differences in the response of their hematopoietic tissues to ionizing radiation. The proteins from these populations were analyzed using two-dimensional difference gel electrophoresis (2D DIGE) and mass spectrometry.
View Article and Find Full Text PDFUntargeted effects of ionizing radiation (de novo effects in the unirradiated descendants or neighbors of irradiated cells) challenge widely held views about the mechanisms of radiation-induced DNA damage with implications for the health consequences of radiation exposures particularly in the context of the induction of malignancy. To investigate in vivo untargeted effects of sparsely ionizing (low linear energy transfer) radiation, a congenic sex-mismatch bone marrow transplantation protocol has been used to repopulate the hemopoietic system from a mixture of gamma-irradiated and nonirradiated hemopoietic stem cells such that host-, irradiated donor- and unirradiated donor-derived cells can be distinguished. Chromosomal instability in the progeny of irradiated hemopoietic stem cells accompanied by a reduction in their contribution to the repopulated hemopoietic system is consistent with a delayed genomic instability phenotype being expressed in vivo.
View Article and Find Full Text PDFAlthough it is well established that ionizing radiation and benzene are epidemiologically linked to acute myeloid leukemia (AML), the underlying mechanisms are not understood. We have shown that gamma-radiation can induce a persisting genomic instability in the clonal descendants of hemopoietic stem cells manifested as a high frequency of nonclonal chromosome and chromatid aberrations. A strikingly similar instability is shown after exposure to the benzene metabolite hydroquinone.
View Article and Find Full Text PDFCancers arise as a consequence of the accumulation of multiple genetic mutations in a susceptible cell, resulting in perturbation of regulatory networks that control proliferation, survival, and cellular function. Here, the sources of cellular stress that can cause oncogenic mutations and the responses of cells to DNA damage are reviewed. The role of different repair pathways and the potential for cell- and tissue-specific reliance on individual repair mechanisms are discussed.
View Article and Find Full Text PDFThe major adverse consequences of radiation exposures are attributed to DNA damage in irradiated cells that has not been correctly restored by metabolic repair processes. However, the dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that are the descendants of irradiated cells either directly or via media transfer (radiation-induced genomic instability) or in cells that have communicated with irradiated cells (radiation-induced bystander effects).
View Article and Find Full Text PDFThe paradigm of genetic alterations being restricted to direct DNA damage after exposure to ionizing radiation has been challenged by observations in which effects of ionizing radiation arise in cells that in themselves receive no radiation exposure. These effects are demonstrated in cells that are the descendants of irradiated cells (radiation-induced genomic instability) or in cells that are in contact with irradiated cells or receive certain signals from irradiated cells (radiation-induced bystander effects). Bystander signals may be transmitted either by direct intercellular communication through gap junctions, or by diffusible factors, such as cytokines released from irradiated cells.
View Article and Find Full Text PDF