Racemic benzylic amines undergo kinetic resolution via benzoylation with benzoic anhydride in the presence of a dual catalyst system consisting of a readily available amide-thiourea catalyst and 4-dimethylaminopyridine (DMAP). An evaluation of various experimental parameters was performed in order to derive a more detailed understanding of what renders this process selective. The catalyst's aggregation behavior and anion-binding ability were evaluated in regard to their relevance for the catalytic process.
View Article and Find Full Text PDFA dual-catalysis approach enables the small-molecule catalyzed kinetic resolution of allylic amines by acylation. By employing 2 mol % of each 4-(pyrrolidino)pyridine (PPY) and a readily available chiral hydrogen-bonding cocatalyst, the first nonenzymatic kinetic resolution of allylic amines was accomplished with s factors of up to 20.
View Article and Find Full Text PDFAn efficient kinetic resolution of primary propargylic amines with s-factors of up to 56 is reported. The strategy is based on a dual catalytic approach, namely the use of a newly developed and easy-to-make thiourea-amide anion binding catalyst in combination with 4-(dimethylamino)pyridine (DMAP), both employed at a 5 mol % catalyst loading. Benzylic amines are also resolved with s-factors of up to 38.
View Article and Find Full Text PDFA new concept for asymmetric nucleophilic catalysis is presented. Acyl pyridinium salts derived from 4-(dimethylamino)pyridine (DMAP) and benzoic anhydride are rendered chiral via interaction with a chiral thiourea anion receptor. The power of this concept is demonstrated in the context of kinetic amine resolution.
View Article and Find Full Text PDFJ Am Chem Soc
September 2008
Highly enantioselective organocatalytic aldol additions of alpha-isothiocyanato imides to aldehydes are reported. These reactions provide convenient access to enantiomerically enriched and protected beta-hydroxy-alpha-amino acids with catalyst loadings as low as 1 mol%.
View Article and Find Full Text PDF