When wine grapes are exposed to smoke, there is a risk that the resulting wines may possess smoky, ashy, or burnt aromas, a wine flaw known as smoke taint. Smoke taint occurs when the volatile phenols (VPs) largely responsible for the aroma of smoke are transformed in grape into a range of glycosides that are imperceptible by smell. The majority of VP-glycosides described to date are disaccharides possessing a reducing β-d-glucopyranosyl moiety.
View Article and Find Full Text PDFThe exposure of Vitis vinifera L. berries to forest fire smoke changes the concentration of phenylpropanoid metabolites in berries and the resulting wine. The exposure of Vitis vinifera L.
View Article and Find Full Text PDFThe exposure of Vitis vinifera L. vines to smoke from wildland fires can alter the chemical composition of the berries, such that the resulting wine can possess a defect known as smoke-taint. This work constitutes a complete method for the analysis of simple volatile phenol glycosides (VP-glycosides) that can be elevated in berries and wine following smoke exposure.
View Article and Find Full Text PDFA full understanding of the origin, formation and degradation of volatile compounds that contribute to wine aroma is required before wine style can be effectively managed. Fractionation of grapes represents a convenient and robust method to simplify the grape matrix to enhance our understanding of the grape contribution to volatile compound production during yeast fermentation. In this study, acetone extracts of both Riesling and Cabernet Sauvignon grape berries were fractionated and model wines produced by spiking aliquots of these grape fractions into model grape juice must and fermented.
View Article and Find Full Text PDFSmoke-taint is a wine defect linked to organoleptic volatile phenols (VPs) in Vitis vinifera L. berries that have been exposed to smoke from wildland fires. Herein, the levels of smoke-taint-associated VPs are reported in Cabernet Franc berries from veraison to commercial maturity and in wine after primary fermentation following on-vine exposure to simulated wildland fire smoke.
View Article and Find Full Text PDFAccurate methods for quantitating volatile phenols (i.e., guaiacol, syringol, 4-ethylphenol, etc.
View Article and Find Full Text PDFGrape composition affects wine flavour and aroma not only through varietal compounds, but also by influencing the production of volatile compounds by yeast. C9 and C12 compounds that potentially influence ethyl ester synthesis during fermentation were studied using a model grape juice medium. It was shown that the addition of free fatty acids, their methyl esters or acyl-carnitine and acyl-amino acid conjugates can increase ethyl ester production in fermentations.
View Article and Find Full Text PDFMethoxypyrazines are a family of potent volatile compounds of diverse biological significance. They are used by insects and plants in chemical defence, are present in many vegetables and fruit and, in particular, impart herbaceous/green/vegetal sensory attributes to wines of certain varieties, including Cabernet Sauvignon. While pathways for methoxypyrazine biosynthesis have been postulated, none of the steps have been confirmed genetically.
View Article and Find Full Text PDFAn important process for the regulation of auxin levels in plants is the inactivation of indole-3-acetic acid (IAA) by conjugation to amino acids. The conjugation reaction is catalysed by IAA-amido synthetases belonging to the family of GH3 proteins. Genetic approaches to study the biological significance of these enzymes have been hampered by large gene numbers and a high degree of functional redundancy.
View Article and Find Full Text PDFWine is a complex consumer product produced predominately by the action of yeast upon grape juice musts. Model must systems have proven ideal for studies of the effects of fermentation conditions on the production of certain wine volatiles. To identify grape-derived precursors to acetate esters, model fermentation systems were developed by spiking precursors into model must at different concentrations.
View Article and Find Full Text PDFMethoxypyrazines (MPs) are volatile, grape-derived aroma compounds that contribute to the distinct herbaceous characters of some wines. Although the full pathway leading to MP production has not been elucidated, there is strong evidence that the final step involves the methylation of non-volatile hydroxypyrazine (HP) precursors. Two cDNA encoding O-methyltransferases (OMTs) that have homology to an enzyme previously purified and shown to catalyse the methylation of HPs were isolated from Cabernet Sauvignon.
View Article and Find Full Text PDF