Purpose: Pulmonary hypertension (PH) is a common cause of postoperative mortality in cardiac surgery that is commonly treated with conventional inhaled therapies, specifically nitric oxide and prostacyclin. Alternative therapies include inhaled milrinone and levosimendan, which are receiving more research interest and are increasing in clinical use as they may cut costs while allowing for easier administration. We sought to conduct a scoping review to appraise the evidence base for the use of these two novel inhaled vasodilators as an intervention for PH in cardiac surgery.
View Article and Find Full Text PDFIntroduction: The current COVID-19 pandemic has produced numerous innovations in personal protective equipment, barrier devices, and infection mitigation strategies, which have not been validated. During high-risk procedures such as airway manipulation, coughs are common and discrete events that may expose healthcare workers to large amounts of viral particles. A simulated cough under controlled circumstances can rapidly test novel devices and protocols and thus aid in their evaluation and the development of implementation guidelines.
View Article and Find Full Text PDFBackground: Numerous barrier devices have recently been developed and rapidly deployed worldwide in an effort to protect health care workers (HCWs) from exposure to coronavirus disease 2019 (COVID-19) during high-risk procedures. However, only a few studies have examined their impact on the dispersion of droplets and aerosols, which are both thought to be significant contributors to the spread of COVID-19.
Methods: Two commonly used barrier devices, an intubation box and a clear plastic intubation sheet, were evaluated using a physiologically accurate cough simulator.
Background: The aerosol box was rapidly developed and disseminated to minimize viral exposure during aerosolizing procedures during the COVID-19 pandemic, yet users may not understand how to use and clean the device. This could potentially lead to increased viral exposure to subsequent patients and practitioners. We evaluated intraoperative contamination and aerosol box decontamination and the impact of a preoperative educational visual aid.
View Article and Find Full Text PDFThe COVID-19 pandemic threatened to overwhelm the medical system of New York City, and the threat of ventilator shortages was real. Using high-fidelity simulation, a variety of solutions were tested to solve the problem of ventilator shortages including innovative designs for safely splitting ventilators, converting noninvasive ventilators to invasive ventilators, and testing and improving of ventilators created by outside companies. Simulation provides a safe environment for testing of devices and protocols before use on patients and should be vital in the preparation for emergencies such as the COVID-19 pandemic.
View Article and Find Full Text PDFThe popularization of studies in membrane protein lipid phase coexistence has prompted the development of new techniques to construct and study biomimetic systems with cholesterol-rich lipid microdomains. Here, microsphere-supported biomembranes with integrated α-helical peptides, referred to as proteolipobeads (PLBs), were used to model peptide/protein partitioning within DOPC/DPPC/cholesterol phase-separated membranes. Due to the appearance of compositional heterogeneity and impurities in the formation of model PLB assemblies, fluorescence-activated cell sorting (FACS) was used to characterize and sort PLB populations on the basis of disordered phase (L) content.
View Article and Find Full Text PDFSupported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres.
View Article and Find Full Text PDFUsing rheo-optical techniques, we investigated the impact of interfacial wetting of symmetric diblock copolymers (BCPs) on the coalescence and aggregation of polydimethylsiloxane (PDMS) droplets in immiscible polyethylene-propylene (PEP) homopolymers. Anionic polymerization was used to synthesize well-defined matrix homopolymers and symmetric 16 kg/mol-to-16 kg/mol PDMS-b-PEP diblock copolymers with low polydispersity (PDI ≈ 1.02) as characterized with size exclusion chromatography and nuclear magnetic resonance spectroscopy.
View Article and Find Full Text PDF