Publications by authors named "Eric Frantz"

We present a rapid and quantitative point-of-care (PoC) system based on a smartphone application that is capable of accurately tracking the flow of red blood cells (RBCs) through a no-reaction lateral flow assay (nrLFA) device. Utilizing only the camera feed from the smartphone and built-in image processing, the nrLFA is identified and RBC fluid flow distances and rates are recorded in parallel with the test without the need of any custom hardware or enclosure. We demonstrated the application by first measuring and then calculating hematocrit (Hct) values of whole blood samples with nominal content of 28%, 35%, 40%, and 45% Hct on the nrLFA platform.

View Article and Find Full Text PDF

A promising route for the synthesis of large-area graphene, suitable for standard device fabrication techniques, is the sublimation of silicon from silicon carbide at elevated temperatures (>1200 degrees C). Previous reports suggest that graphene nucleates along the (110n) plane, known as terrace step edges, on the silicon carbide surface. However, to date, a fundamental understanding of the nucleation of graphene on silicon carbide is lacking.

View Article and Find Full Text PDF
Article Synopsis
  • There is a strong connection between how mobile carriers are in epitaxial graphene and its Raman topography when grown on silicon carbide.
  • The Hall mobility varies significantly based on the thickness of the graphene and the uniformity of strain in the monolayer.
  • High mobility of 18,100 cm²/(V s) at room temperature is achieved, and this mobility is greatly affected by the stacking arrangement of the graphene layers.
View Article and Find Full Text PDF

Large-size and high-quality ReCa(4)O(BO(3))(3) (ReCOB, Re = rare earth) single crystals were grown by the Czochralski pulling method. In this work, the electrical properties were investigated at room temperature and elevated temperature for YCa(4)O(BO(3))(3) (YCOB). The dielectric permittivity, piezoelectric strain coefficient, and electromechanical coupling were found to be on the order of 11, 6.

View Article and Find Full Text PDF

The synthesis of several (salen)MnN3 complexes in good yields and purities were achieved by the reaction of manganese(III) acetate and H2salen, followed by metathesis of the remaining acetate ligand with an aqueous solution of NaN3. The X-ray structures of two derivatives, where salen=N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-ethylenediamine and N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexenediamine respectively, were determined. The complexes were shown to be monomeric 5-coordinate derivatives displaying a distorted square pyramidal geometry, and to be d4 high-spin derivatives by solution magnetic moment measurements using the Evans method.

View Article and Find Full Text PDF

Five-coordinate manganese(III) complexes of N, N'-bis(trifluoroacetylacetone)-1,2-ethylenediimine (tfacacen) have been synthesized and structurally characterized by X-ray crystallography. The presence of the electron-withdrawing -CF3 substituents enhances the electrophilicity of the metal center in these (tfacacen)MnX (X=Cl, N3, NCO, NCS) derivatives when compared with their (acacen)MnX (acacen=N, N'-bis(acetylacetone)-1,2-ethylenediimine) analogs. This is demonstrated by the increased propensity of the Mn(III) center in the tfacacen complexes to bind a sixth ligand.

View Article and Find Full Text PDF

Schiff base complexes of the form (acacen)Mn(III)X (acacen = N,N'-bis(acetylacetone)-1,2-ethylenediimine), where X = OAc, Cl, or N(3), have been evaluated for their ability to couple CO(2) and cyclohexene oxide in the presence of a variety of cocatalysts to provide cyclic or polycarbonates. These complexes proved to be ineffective at catalyzing this process; however, valuable information related to the coordination chemistry of these manganese Schiff bases was elucidated. Of importance, mechanistic findings as revealed by comprehensive studies involving structurally related (salen)CrX and (salen)CoX complexes strongly support the requirement of six-coordinate metal species for the effective copolymerization of CO(2) and epoxides.

View Article and Find Full Text PDF