Pyrenoids are algal CO-fixing organelles that mediate approximately one-third of global carbon fixation and hold the potential to enhance crop growth if engineered into land plants. Most pyrenoids are traversed by membranes that are thought to supply them with concentrated CO. Despite the critical nature of these membranes for pyrenoid function, they are poorly understood, with few protein components known in any species.
View Article and Find Full Text PDFApproximately one-third of global CO assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized pyrenoid-traversing membranes are hypothesized to drive CO assimilation in the pyrenoid by delivering concentrated CO, but how these membranes are made to traverse the pyrenoid matrix remains unknown. Here we show that proteins SAGA1 and MITH1 cause membranes to traverse the pyrenoid matrix in the model alga Chlamydomonas reinhardtii.
View Article and Find Full Text PDFApproximately one-third of global CO assimilation is performed by the pyrenoid , a liquid-like organelle found in most algae and some plants . Specialized membranes are hypothesized to drive CO assimilation in the pyrenoid by delivering concentrated CO , but their biogenesis and function have not been experimentally characterized. Here, we show that homologous proteins SAGA1 and MITH1 mediate the biogenesis of the pyrenoid membrane tubules in the model alga and are sufficient to reconstitute pyrenoid-traversing membranes in a heterologous system, the plant .
View Article and Find Full Text PDFA mechanism for concentrating carbon dioxide has for the first time been successfully transferred into a species that lacks such a process.
View Article and Find Full Text PDFComplement Ther Clin Pract
August 2020
Mental imagery (MI) research has mainly focused to date on mechanisms of effect and performance gains associated with muscle and neural tissues. MI's potential to affect fascia has rarely been considered. This paper conceptualizes ways in which MI might mutually interact with fascial tissue to support performance and cognitive functions.
View Article and Find Full Text PDF