IEEE Trans Neural Netw Learn Syst
August 2014
A new algorithm for the selection of input variables of neural network is proposed. This new method, applied after the training stage, ranks the inputs according to their importance in the variance of the model output. The use of a global sensitivity analysis technique, extended Fourier amplitude sensitivity test, gives the total sensitivity index for each variable, which allows for the ranking and the removal of the less relevant inputs.
View Article and Find Full Text PDFIEEE Trans Neural Netw
March 2006
In this paper, we propose a new pruning algorithm to obtain the optimal number of hidden units of a single layer of a fully connected neural network (NN). The technique relies on a global sensitivity analysis of model output. The relevance of the hidden nodes is determined by analysing the Fourier decomposition of the variance of the model output.
View Article and Find Full Text PDF