Mechanisms of protein-carbohydrate recognition attract a lot of interest due to their roles in various cellular processes and metabolism disorders. We have performed a large-scale analysis of protein structures solved in complex with glucose, galactose and their substituted analogues. We found that, on average, sugar molecules establish five hydrogen bonds (HBs) in the binding site, including one to three HBs with bridging water molecules.
View Article and Find Full Text PDFBecause protein-protein interactions underpin most biological processes, developing tools that target them to understand their function or to inform the development of therapeutics is an important task. SUMOylation is the posttranslational covalent attachment of proteins in the SUMO family (SUMO-1, SUMO-2, or SUMO-3), and it regulates numerous cellular pathways. SUMOylated proteins are recognized by proteins with SUMO-interaction motifs (SIMs) that facilitate noncovalent interactions with SUMO.
View Article and Find Full Text PDFThe stability of folded proteins is critical to their biological function and for the efficacy of protein therapeutics. Predicting the energetic effects of protein mutations can improve our fundamental understanding of structural biology, the molecular basis of diseases, and possible routes to addressing those diseases with biological drugs. Identifying the effect of single amino acid point mutations on the thermodynamic equilibrium between the folded and unfolded states of a protein can pinpoint residues of critical importance that should be avoided in the process of improving other properties (affinity, solubility, viscosity, etc.
View Article and Find Full Text PDFOxytocin (OT) modulates the expression of social and emotional behaviors and consequently has been proposed as a pharmacologic treatment of psychiatric diseases, including autism spectrum disorders and schizophrenia; however, endogenous OT has a short half-life in plasma and poor permeability across the blood-brain barrier. Recent efforts have focused on the development of novel drug delivery methods to enhance brain penetration, but few efforts have aimed at improving its half-life. To explore the behavioral efficacy of an OT analog with enhanced plasma stability, we developed PF-06655075 (PF1), a novel non-brain-penetrant OT receptor agonist with increased selectivity for the OT receptor and significantly increased pharmacokinetic stability.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2014
Using an expanded genetic code, antibodies with site-specifically incorporated nonnative amino acids were produced in stable cell lines derived from a CHO cell line with titers over 1 g/L. Using anti-5T4 and anti-Her2 antibodies as model systems, site-specific antibody drug conjugates (NDCs) were produced, via oxime bond formation between ketones on the side chain of the incorporated nonnative amino acid and hydroxylamine functionalized monomethyl auristatin D with either protease-cleavable or noncleavable linkers. When noncleavable linkers were used, these conjugates were highly stable and displayed improved in vitro efficacy as well as in vivo efficacy and pharmacokinetic stability in rodent models relative to conventional antibody drug conjugates conjugated through either engineered surface-exposed or reduced interchain disulfide bond cysteine residues.
View Article and Find Full Text PDFJ Chem Inf Model
October 2013
The momentum gained by research on biologics has not been met yet with equal thrust on the informatics side. There is a noticeable lack of software for data management that empowers the bench scientists working on the development of biologic therapeutics. SARvision|Biologics is a tool to analyze data associated with biopolymers, including peptides, antibodies, and protein therapeutics programs.
View Article and Find Full Text PDFStapled α-helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action.
View Article and Find Full Text PDFFragment-based drug design (FBDD), which is comprised of both fragment screening and the use of fragment hits to design leads, began more than 15 years ago and has been steadily gaining in popularity and utility. Its origin lies on the fact that the coverage of chemical space and the binding efficiency of hits are directly related to the size of the compounds screened. Nevertheless, FBDD still faces challenges, among them developing fragment screening libraries that ensure optimal coverage of chemical space, physical properties and chemical tractability.
View Article and Find Full Text PDFThe Protein Data Bank is the most comprehensive source of experimental macromolecular structures. It can, however, be difficult at times to locate relevant structures with the Protein Data Bank search interface. This is particularly true when searching for complexes containing specific interactions between protein and ligand atoms.
View Article and Find Full Text PDFIn this paper, we describe a combination of structural informatics approaches developed to mine data extracted from existing structure knowledge bases (Protein Data Bank and the GVK database) with a focus on kinase ATP-binding site data. In contrast to existing systems that retrieve and analyze protein structures, our techniques are centered on a database of ligand-bound geometries in relation to residues lining the binding site and transparent access to ligand-based SAR data. We illustrate the systems in the context of the Abelson kinase and related inhibitor structures.
View Article and Find Full Text PDFThe prevention of aggrecan (a key component of cartilage) cleavage via the inhibition of aggrecanase-1 may provide a unique opportunity to stop the progression of cartilage degradation in osteoarthritis. The evaluation of a series of biphenylsulfonamides resulted in the identification of the ((4-keto)-phenoxy)methyl biphenyl-4-sulfonamides analogs (19-21 and 24) with improved Agg-1 inhibition and MMP-2, MMP-13 activity.
View Article and Find Full Text PDFJ Comput Aided Mol Des
October 2008
A novel algorithm for the connecting of fragment molecules is presented and validated for a number of test systems. Within the CONFIRM (Connecting Fragments Found in Receptor Molecules) approach a pre-prepared library of bridges is searched to extract those which match a search criterion derived from known experimental or computational binding information about fragment molecules within a target binding site. The resulting bridge 'hits' are then connected, in an automated fashion, to the fragments and docked into the target receptor.
View Article and Find Full Text PDFWe describe an automated method for the modeling of point mutations in protein structures. The protein is represented by all non-hydrogen atoms. The scoring function consists of several types of physical potential energy terms and homology-derived restraints.
View Article and Find Full Text PDFStructure-based lead optimization approaches are increasingly playing a role in the drug-discovery process. Recent advances in 'high-throughput' molecular docking methods and examples of their successful use in lead optimization are reviewed. Measures of docking accuracy, scoring function comparisons, and consensus approaches are discussed.
View Article and Find Full Text PDFStructure-based methods were used to design beta-sulfone 3,3-piperidine hydroxamates as TACE inhibitors with the aim of improving selectivity for TACE versus MMP-13. Several compounds in this series were synthesized and evaluated in enzymatic and cell-based assays. These analogs exhibit excellent in vitro potency against isolated TACE enzyme and show good selectivity for TACE over the related metalloproteases MMP-2, -13, and -14.
View Article and Find Full Text PDFAntimicrob Agents Chemother
June 2006
Tigecycline is a novel glycylcycline antibiotic that possesses broad-spectrum activity against many clinically relevant species of bacterial pathogens. The mechanism of action of tigecycline was delineated using functional, biophysical, and molecular modeling experiments in this study. Functional assays showed that tigecycline specifically inhibits bacterial protein synthesis with potency 3- and 20-fold greater than that of minocycline and tetracycline, respectively.
View Article and Find Full Text PDF