Publications by authors named "Eric Fedyk"

Bruton's tyrosine kinase (BTK) is a target for treatment of hematologic malignancies and autoimmune diseases. TAK-020 is a highly selective covalent BTK inhibitor that inhibits both B cell receptor and fragment crystallizable receptor signaling. We assessed the safety/tolerability and pharmacokinetics/pharmacodynamics (PDs) of TAK-020 in healthy subjects.

View Article and Find Full Text PDF

Aims: This investigation characterised tolerability, pharmacokinetics and pharmacodynamics of the anti-CD38 antibody TAK-079.

Methods: A randomised, double-blind, placebo-controlled trial of a single intravenous (i.v.

View Article and Find Full Text PDF

Ectoenzyme CD38 is increased on lymphocytes in response to an antigenic challenge and it is hypothesized that targeting these activated lymphocytes could ameliorate pathologic activities in autoimmune diseases. The cynomolgus monkey is an appropriate model for assessing potential effects of targeting CD38 in humans because these species exhibit similar expression profiles. TAK-079 is a human monoclonal antibody (IgG ) that binds to CD38 and lyses bound cells by complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity.

View Article and Find Full Text PDF

We are studying the fully human, IgG1λ cytolytic monoclonal antibody TAK-079, which binds CD38. CD38 is expressed on plasma and natural killer (NK) cells constitutively and upregulated on subsets of B and T lymphocytes upon activation. TAK-079 cross-reacts with CD38 expressed by cynomolgus monkeys and depletes subsets of NK, B, and T cells.

View Article and Find Full Text PDF

C-C chemokine receptor 9 (CCR9) is the homing receptor for C-C motif chemokine ligand 25 (CCL25), and contributes to the maintenance of mucosal immunity and pathogenesis of inflammatory bowel disease (IBD) through the recruitment of T cells into the gut mucosa. Recent reports suggest that the interaction of CCR9 and CCL25 in the large intestine correlate with disease severity of colonic IBD. MLN3126 is an orally available small molecular compound with potent and selective CCR9 antagonist activity.

View Article and Find Full Text PDF

Vedolizumab is a humanized anti-αβ integrin monoclonal antibody that selectively blocks trafficking of memory T cells to inflamed gut tissue by inhibiting the αβ-mucosal addressin cell adhesion molecule-1 (MAdCAM-1) interaction. Approved for treating patients with moderately to severely active ulcerative colitis (UC) or Crohn's disease (CD), vedolizumab is administered as a 300 mg intravenous infusion. Vedolizumab undergoes a rapid, saturable, non-linear, target-mediated elimination process at low concentrations and a slower, linear, non-specific elimination process at higher concentrations.

View Article and Find Full Text PDF

Vedolizumab is a novel therapeutic monoclonal antibody recently approved for the treatment of moderately to severely active ulcerative colitis and Crohn's disease in adults who have failed at least one conventional therapy. An integrin antagonist, vedolizumab binds to the αβ integrin which is expressed specifically by a subset of gastrointestinal-homing T lymphocytes. The binding of αβ integrin to mucosal addressin cell adhesion molecule-1 expressed on the surface of mucosal endothelial cells is a crucial component of the gut-selective homing mechanism for lymphocytes.

View Article and Find Full Text PDF

Vedolizumab (VDZ) is a humanized monoclonal antibody in development for the treatment of inflammatory bowel disease. VDZ binds to the α4β7 integrin complex and inhibits its binding to mucosal addressin cell adhesion molecule-1 (MAdCAM-1), thus preventing lymphocyte extravasation to gut mucosal tissues. To understand whether VDZ has additional effects that may affect its overall safety as a therapeutic molecule, we examined other potential actions of VDZ.

View Article and Find Full Text PDF

Background: Biological therapies that antagonize specific molecules have demonstrated efficacy in inflammatory bowel diseases, but infections resulting from systemic immunosuppression underscore the need for safer therapies. The objective of this investigation was to determine if antagonism of the α(4) β(7) integrin would exclusively yield gut-selective antiinflammatory activity in primates.

Methods: A series of experiments were conducted to investigate potential intra- and extraintestinal effects in healthy nonhuman primates dosed repeatedly with the α(4) β(7) -exclusive antagonist vedolizumab (former versions: MLN0002, MLN02, LDP-02) for 4, 13, and 26 weeks.

View Article and Find Full Text PDF

Vedolizumab is a humanized monoclonal antibody that targets the alpha(4)beta(7) integrin exclusively, and modulates inflammation in the gastrointestinal tract without inducing the systemic immunosuppression that characterizes anti-alpha(4) chain monoclonal antibodies, such as natalizumab. This unique pharmacologic profile is largely attributable to four determinants. The first determinant is the restriction of the expression of the alpha(4)beta(7) integrin to subsets of leukocytes.

View Article and Find Full Text PDF

GT-1 murine neuronal cells exposed to an experimental proteasome inhibitor (EPI) for 24h showed increased cell death via a non-apoptotic mechanism, as assessed by TUNEL and DNA fragmentation assays. Immunofluorescence staining demonstrated that EPI induced reorganization and relocation of non-ubiquinated actin microfilaments and microtubules to the perinuclear region in EPI treated cells. Immunohistochemistry analysis also demonstrated that other non-cytoskeletal proteins became ubiquitinated and/or upregulated including ubiquitin and other stress proteins.

View Article and Find Full Text PDF

CD4+ Th2 cells are important regulators of allergic inflammation. CCR8 is thought to play a role in Th2-mediated responses, however, expression of CCR8 in peripheral blood has not been fully characterized. Using a fluorescent form of the ligand selective for CCR8 (F-CCL1), we identified the leukocytes expressing CCR8 in human, monkey, and mouse peripheral blood.

View Article and Find Full Text PDF

Imbalanced protease activity has long been recognized in the progression of disease states such as cancer and inflammation. Serpins, the largest family of endogenous protease inhibitors, target a wide variety of serine and cysteine proteases and play a role in a number of physiological and pathological states. The expression profiles of 20 serpins and 105 serine and cysteine proteases were determined across a panel of normal and diseased human tissues.

View Article and Find Full Text PDF

Chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), a G protein-coupled receptor activated by prostaglandin D(2) (PGD(2)), has been identified as a receptor expressed on cell types critical to the pathogenesis of asthma. The cDNA encoding guinea pig CRTH2 was cloned and mRNA expression examined in selected tissues. Transcript profiling of guinea pig CRTH2 indicated relatively high levels of expression in bone marrow, intermediate levels in brain and relatively low levels in lung, spleen, thymus, lymph node, etc.

View Article and Find Full Text PDF

Chemokine-induced T lymphocyte recruitment to the lung is critical for allergic inflammation, but chemokine signaling pathways are incompletely understood. Regulator of G protein signaling (RGS)16, a GTPase accelerator (GTPase-activating protein) for Galpha subunits, attenuates signaling by chemokine receptors in T lymphocytes, suggesting a role in the regulation of lymphocyte trafficking. To explore the role of RGS16 in T lymphocyte-dependent immune responses in a whole-organism model, we generated transgenic (Tg) mice expressing RGS16 in CD4(+) and CD8(+) cells.

View Article and Find Full Text PDF