Associative electronic detachment (AED) between anions and neutral atoms leads to the detachment of the anion's electron resulting in the formation of a neutral molecule. It plays a key role in chemical reaction networks, like the interstellar medium, the Earth's ionosphere and biochemical processes. Here, a class of AED involving a closed-shell anion (OH) and alkali atoms (rubidium) is investigated by precisely controlling the fraction of electronically excited rubidium.
View Article and Find Full Text PDFA linear cryogenic 16-pole wire ion trap has been developed and constructed for cryogenic ion spectroscopy at temperatures below 4 K. The trap is temperature-variable, can be operated with different buffer gases, and offers large optical access perpendicular to the ion beam direction. The housing geometry enables temperature measurement during radio frequency operation.
View Article and Find Full Text PDFRotational transitions of the nonlinear triatomic molecular anion NH_{2}^{-} have been observed by terahertz spectroscopy in a cryogenic radio frequency ion trap. Absorption of terahertz photons has been probed by rotational state-dependent photodetachment of the trapped negative ions near the detachment threshold. Using this two-photon scheme, the two lowest rotational transitions for the asymmetric top rotor NH_{2}^{-} have been found.
View Article and Find Full Text PDFIn the interstellar medium (ISM) ion–molecule reactions play a key role in forming complex molecules. Since 2006, after the radioastronomical discovery of the first of by now six interstellar anions, interest has grown in understanding the formation and destruction pathways of negative ions in the ISM. Experiments have focused on reactions and photodetachment of the identified negatively charged ions.
View Article and Find Full Text PDF