Publications by authors named "Eric E Roller"

We report a method for the rapid and automated measurements of the incorporation kinetics of fluorescent dye-labeled nucleotides by DNA polymerases without using stopped-flow and quench-flow methods. Total internal reflection fluorescence microscopy is used to monitor the incorporation of fluorescently labeled nucleotides by DNA polymerase into surface-bound primed DNA templates, and a microfluidic system is used to perform the reactions. We successfully demonstrated the method using Bst DNA polymerase and a set of coumarin-labeled nucleotides.

View Article and Find Full Text PDF

We describe a method for multiplexed analysis of proteins using fluorescently encoded microbeads. The sensitivity of our method is comparable to the sensitivity obtained by enzyme-linked immunosorbent assay while only 5 µl sample volumes are needed. Streptavidin-coated, 1 µm beads are encoded with a combination of fluorophores at different intensity levels.

View Article and Find Full Text PDF

We report the development of a microfabricated electrophoretic device for assembling high-density arrays of antibody-conjugated microbeads for chip-based protein detection. The device consists of a flow cell formed between a gold-coated silicon chip with an array of microwells etched in a silicon dioxide film and a glass coverslip with a series of thin gold counter electrode lines. We have demonstrated that 0.

View Article and Find Full Text PDF

We report the proof of concept of a novel DNA sequencing technology called sequencing by denaturation (SBD). SBD is based on the Sanger sequencing reaction performed on amplified target templates immobilized on a solid surface followed by the denaturation of these Sanger fragments. As these fluorescently labeled fragments denature sequentially, the fluorescence intensities in the four channels corresponding to the four base types are monitored in a flow cell.

View Article and Find Full Text PDF