Publications by authors named "Eric Dufresne"

Liquid-liquid phase separation (LLPS) is an intracellular process widely used by cells for many key biological functions. It occurs in complex and crowded environments, where amino acids (AAs) are vital components. We have found that AAs render the net interaction between proteins more repulsive.

View Article and Find Full Text PDF

The surface tension of partially wetting droplets deforms soft substrates. These deformations are usually localized to a narrow region near the contact line, forming a so-called 'elastocapillary ridge.' When a droplet slides along a substrate, the movement of the elastocapillary ridge dissipates energy in the substrate and slows the droplet down.

View Article and Find Full Text PDF
Article Synopsis
  • Freezing can damage soft, wet materials like hydrogels, but scientists were unsure why this happens.
  • Researchers found that when ice forms, it causes nearby water to move towards it, which dries out the surrounding hydrogel and causes it to crack.
  • Understanding this process can help scientists in areas like food storage and preserving cells when they freeze things.
View Article and Find Full Text PDF

Glassy solids evolve towards lower-energy structural states by physical aging. This can be characterized by structural relaxation times, the assessment of which is essential for understanding the glass' time-dependent property changes. Conducted over short times, a continuous increase of relaxation times with time is seen, suggesting a time-dependent dissipative transport mechanism.

View Article and Find Full Text PDF

Understanding and interpreting dynamics of functional materials in situ is a grand challenge in physics and materials science due to the difficulty of experimentally probing materials at varied length and time scales. X-ray photon correlation spectroscopy (XPCS) is uniquely well-suited for characterizing materials dynamics over wide-ranging time scales. However, spatial and temporal heterogeneity in material behavior can make interpretation of experimental XPCS data difficult.

View Article and Find Full Text PDF

Biological macromolecules can condense into liquid domains. In cells, these condensates form membraneless organelles that can organize chemical reactions. However, little is known about the physical consequences of chemical activity in and around condensates.

View Article and Find Full Text PDF

The β-relaxation is one of the major dynamic behaviors in metallic glasses (MGs) and exhibits diverse features. Despite decades of efforts, the understanding of its structural origin and contribution to the overall dynamics of MG systems is still unclear. Here two palladium-based Pd─Cu─P and Pd─Ni─P MGs are reported with distinct different β-relaxation behaviors and reveal the structural origins for the difference using the advanced X-ray photon correlation spectroscopy and absorption fine structure techniques together with the first-principles calculations.

View Article and Find Full Text PDF

Damage caused by freezing wet, porous materials is a widespread problem but is hard to predict or control. Here, we show that polycrystallinity significantly speeds up the stress buildup process that underpins this damage. Unfrozen water in grain-boundary grooves feeds ice growth at temperatures below the freezing temperature, leading to fast stress buildup.

View Article and Find Full Text PDF
Article Synopsis
  • X-ray photon correlation spectroscopy (XPCS) is a technique that can observe atomic-scale dynamics in materials during both stable and changing conditions.
  • This study focuses on the relaxor ferroelectric material PbMgNbO (PMN) and shows that a weak AC electric field significantly affects the speckle patterns in diffuse scattering related to polar nanodomains.
  • The researchers propose a model to explain the unexpected dynamic tilting of the material in response to the X-ray beam, suggesting that this piezoresponse may be important for interpreting results in XPCS and similar studies of insulating materials.
View Article and Find Full Text PDF

Bicontinuous microstructures are essential to the function of diverse natural and synthetic systems. Their synthesis has been based on two approaches: arrested phase separation or self-assembly of block copolymers. The former is attractive for its chemical simplicity and the latter, for its thermodynamic robustness.

View Article and Find Full Text PDF

Solutions of macromolecules can undergo liquid-liquid phase separation to form droplets with ultralow surface tension. Droplets with such low surface tension wet and spread over common surfaces such as test tubes and microscope slides, complicating experiments. The development of a universal super-repellent surface for macromolecular droplets has remained elusive because their ultralow surface tension requires low surface energies.

View Article and Find Full Text PDF

Color can originate from wavelength-dependence in the absorption of pigments or the scattering of nanostructures. While synthetic colors are dominated by the former, vivid structural colors found in nature have inspired much research on the latter. However, many of the most vibrant colors in nature involve the interactions of structure and pigment.

View Article and Find Full Text PDF

The dynamics and structure of mixed phases in a complex fluid can significantly impact its material properties, such as viscoelasticity. Small-angle X-ray Photon Correlation Spectroscopy (SA-XPCS) can probe the spontaneous spatial fluctuations of the mixed phases under various in situ environments over wide spatiotemporal ranges (10-10 s /10-10 m). Tailored material design, however, requires searching through a massive number of sample compositions and experimental parameters, which is beyond the bandwidth of the current coherent X-ray beamline.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used X-ray photon correlation spectroscopy to discover that these point defects exhibit intermittent behavior, linked to local fluctuations between two stable phases in the material SrCoO under strain.
  • * By integrating measurement and modeling techniques, the study reveals how defect dynamics can be manipulated for improved performance in applications like neuromorphic systems and electrochemistry, paving the way for future material engineering.
View Article and Find Full Text PDF

Inhomogeneously swollen elastomers are an emergent class of materials, comprising elastic matrices with inclusion phases in the form of microgel particles or osmolytes. Inclusion phases can undergo osmotically driven swelling and deswelling over orders of magnitude. In the swollen state, the inclusions typically have negligible Young's modulus, and the matrix is strongly deformed.

View Article and Find Full Text PDF

Fracture phenomena in soft materials span multiple length and time scales. This poses a major challenge in computational modeling and predictive materials design. To pass quantitatively from molecular to continuum scales, a precise representation of the material response at the molecular level is vital.

View Article and Find Full Text PDF

Synthetic methods to control the structure of materials at sub-micron scales are typically based on the self-assembly of structural building blocks with precise size and morphology. On the other hand, many living systems can generate structure across a broad range of length scales in one step directly from macromolecules, using phase separation. Here, we introduce and control structure at the nano- and microscales through polymerization in the solid state, which has the unusual capability of both triggering and arresting phase separation.

View Article and Find Full Text PDF

Understanding the behavior of defects in the complex oxides is key to controlling myriad ionic and electronic properties in these multifunctional materials. The observation of defect dynamics, however, requires a unique probe-one sensitive to the configuration of defects as well as its time evolution. Here, we present measurements of oxygen vacancy ordering in epitaxial thin films of SrCoO_{x} and the brownmillerite-perovskite phase transition employing x-ray photon correlation spectroscopy.

View Article and Find Full Text PDF

Microtubule plus-end tracking proteins (+TIPs) control microtubule specialization and are as such essential for cell division and morphogenesis. Here we investigated interactions and functions of the budding yeast Kar9 network consisting of the core +TIP proteins Kar9 (functional homologue of APC, MACF and SLAIN), Bim1 (orthologous to EB1) and Bik1 (orthologous to CLIP-170). A multivalent web of redundant interactions links the three +TIPs together to form a '+TIP body' at the end of chosen microtubules.

View Article and Find Full Text PDF

Cell-derived vesicles retain the cytoplasm and much of the native cell membrane composition. Therefore, they are attractive for investigations of membrane biophysics, drug delivery systems, and complex molecular factories. However, their fragility and aggregation limit their applications.

View Article and Find Full Text PDF

Inspired by the cellular design of plant tissue, we present an approach to make versatile, tough, highly water-swelling composites. We embed highly swelling hydrogel particles inside tough, water-permeable, elastomeric matrices. The resulting composites, which we call hydroelastomers, combine the properties of their parent phases.

View Article and Find Full Text PDF
Article Synopsis
  • * Findings show that the prevalence of head and neck cancer pain is stable over time, but there’s a notable increase in temporomandibular pain after treatment; snoring prevalence data remains unreliable.
  • * The conclusion suggests most conditions maintain stable prevalence rates, except temporomandibular pain, and recommends future studies to compare pain changes over time, assess tolerance to devices, and improve data collection methods.
View Article and Find Full Text PDF

Diatoms are single-celled organisms with a cell wall made of silica, called the frustule. Even though their elaborate patterns have fascinated scientists for years, little is known about the biological and physical mechanisms underlying their organization. In this work, we take a top-down approach and examine the micrometer-scale organization of diatoms from the Coscinodiscus family.

View Article and Find Full Text PDF

When materials freeze, they often undergo damage due to ice growth. Although this damage is commonly ascribed to the volumetric expansion of water upon freezing, it is usually driven by the flow of water toward growing ice crystals that feeds their growth. The freezing of this additional water can cause a large buildup of stress.

View Article and Find Full Text PDF