Disorders of developmental delay can occur from pathogenic variants in genes responsible for epigenetic regulation. Heterozygous and biallelic pathogenic variants in TET3 have recently been described in TET3-related Beck-Fahrner syndrome (TET3-BEFAHRS), representing an autosomal dominant disorder with variable expressivity. Typical features include intellectual disability and developmental delay.
View Article and Find Full Text PDFOvergrowth-intellectual disability (OGID) syndromes are a collection of rare genetic disorders with overlapping clinical profiles. In addition to the cardinal features of general overgrowth (height and/or head circumference at least two standard deviations above the mean) and some degree of intellectual disability, the OGID syndromes are often associated with neurological anomalies including seizures. In an effort to advance research in directions that will generate meaningful treatments for people with OGID syndromes, a new collaborative partnership called the Overgrowth Syndromes Alliance (OSA) formed in 2023.
View Article and Find Full Text PDFEvidence for involvement of DNA methylation in psychosis forms the focus of this perspective. Of interest are results from two independent sets of experiments including rats treated with antipsychotic drugs and monozygotic twins discordant for schizophrenia. The results show that DNA methylation is increased in rats treated with antipsychotic drugs, reflecting the global effect of the drugs.
View Article and Find Full Text PDFThere is abundant evidence that prenatal alcohol exposure leads to a range of behavioral and cognitive impairments, categorized under the term fetal alcohol spectrum disorders (FASDs). These disorders are pervasive in Western cultures and represent the most common preventable source of neurodevelopmental disabilities. The genetic and epigenetic etiology of these phenotypes, including those factors that may maintain these phenotypes throughout the lifetime of an affected individual, has become a recent topic of investigation.
View Article and Find Full Text PDFFetal alcohol spectrum disorders (FASDs) are characterized by life-long changes in gene expression, neurodevelopment and behavior. What mechanisms initiate and maintain these changes are not known, but current research suggests a role for alcohol-induced epigenetic changes. In this study we assessed alterations to adult mouse brain tissue by assaying DNA cytosine methylation and small noncoding RNA (ncRNA) expression, specifically the microRNA (miRNA) and small nucleolar RNA (snoRNA) subtypes.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
March 2013
The XXth World Congress of Psychiatric Genetics (WCPG), sponsored by The International Society of Psychiatric Genetics (ISPG) took place in Hamburg, Germany on October 14-18, 2012. Approximately 600 participants gathered to discuss the latest findings in this rapidly advancing field. The following report was written by student travel awardees.
View Article and Find Full Text PDFMany women continue to consume low to moderate quantities of alcohol during pregnancy, which can result in the variable neurobehavioural effects in the absence of physiological abnormalities that characterize fetal alcohol spectrum disorders (FASD). Previously, we reported that a mouse model for FASD based on voluntary maternal ethanol consumption throughout gestation resulted in offspring that showed mild developmental delay, anxiety-related traits, and deficits in spatial learning. Here, we extend this model by evaluating the gene expression changes that occur in the adult brain of C57BL/6J mice prenatally exposed to ethanol via maternal preference drinking.
View Article and Find Full Text PDFThe genetic factors that increase risk for alcohol and nicotine addiction have been elusive, although the frequent co-abuse of these drugs suggests they may act on a common biological pathway. A site of action for both nicotine and alcohol effects in the brain are neuronal nicotinic acetylcholine receptors (nAChR). This report explores the association between six nAChR subunit genes (Chrna3, Chrna4, Chrnb4, Chrnb2, Chrna5, and Chrna7) with alcohol preference (AP) using co-segregation of AP with nAChR subunit genotypes in a F(2) population produced from reciprocal crosses of alcohol-preferring C57BL/6J (B6) and alcohol-avoiding DBA/2J (D2) strains of mice.
View Article and Find Full Text PDF