SN514 is a thermolysin-like enzyme under development as a debrider. Preclinical and non-clinical studies supported a first in human healthy volunteer study to predict the need for protection of periwound skin. Pharmacologic activity testing compared digestion of collagen, fibrin, and elastin with relevant enzymes.
View Article and Find Full Text PDFNecrotic tissue generated by a thermal injury is typically removed via surgical debridement. However, this procedure is commonly associated with blood loss and the removal of viable healthy tissue. For some patients and contexts such as extended care on the battlefield, it would be preferable to remove devitalized tissue with a nonsurgical debridement agent.
View Article and Find Full Text PDFBiofilms are prevalent in non-healing chronic wounds and implicated in delayed healing. Tolerance to antimicrobial treatments and the host's immune system leave clinicians with limited interventions against biofilm populations. It is therefore essential that effective treatments be rigorously tested and demonstrate an impact on biofilm across multiple experimental models to guide clinical investigations and protocols.
View Article and Find Full Text PDFExamination of clinical samples indicates bacterial biofilms are present in the majority of chronic wounds, and substantial evidence suggests biofilms contribute significantly to delayed healing. Bacteria in biofilms are highly tolerant of antimicrobials, and little data exist to guide the choice of anti-biofilm wound therapy. Cadexomer iodine (CI) was recently reported to have superior efficacy compared to diverse wound dressings against Pseudomonas aeruginosa biofilms in an ex vivo model.
View Article and Find Full Text PDFData supporting the concept that microbial biofilms are a major cause of non-healing ulcers remain limited. A porcine model was established where delayed healing resulted from methicillin-resistant Staphylococcus aureus (MRSA) infection in full-thickness wounds. At the end of one study a wound remaining open was sampled and a MRSA strain was isolated.
View Article and Find Full Text PDFA wound biofilm model was created by adapting a superficial infection model. Partial-thickness murine wounds were inoculated with methicillin-resistant Staphylococcus aureus (MRSA). Dense biofilm communities developed at the wound surface after 24 h as demonstrated by microscopy and quantitative microbiology.
View Article and Find Full Text PDFBackground: Health care handwashes/sanitizers help prevent the spread of infection. Many are alcohol-based, providing immediate microbial kill. Few contain persistence factors for residual antimicrobial effects.
View Article and Find Full Text PDFRifamycins have proven efficacy in the treatment of persistent bacterial infections. However, the frequency with which bacteria develop resistance to rifamycin agents restricts their clinical use to antibiotic combination regimens. In a program directed toward the synthesis of rifamycins with a lower propensity to elicit resistance development, a series of compounds were prepared that covalently combine rifamycin and quinolone pharmacophores to form stable hybrid antibacterial agents.
View Article and Find Full Text PDFWe present data from antimicrobial assays performed in vitro that pertain to the potential clinical utility of a novel rifamycin-quinolone hybrid antibiotic, CBR-2092, for the treatment of infections mediated by gram-positive cocci. The MIC(90)s for CBR-2092 against 300 clinical isolates of staphylococci and streptococci ranged from 0.008 to 0.
View Article and Find Full Text PDFNonribosomal peptides (NRPs) are produced by NRP synthetase (NRPS) enzymes that function as molecular assembly lines. The modular architecture of NRPSs suggests that a domain responsible for activating a building block could be replaced with a domain from a foreign NRPS to create a chimeric assembly line that produces a new variant of a natural NRP. However, such chimeric NRPS modules are often heavily impaired, impeding efforts to create novel NRP variants by swapping domains from different modules or organisms.
View Article and Find Full Text PDFA novel series of 3-morpholino rifamycins in which the C25 acetate group was replaced by a carbamate group were prepared and found to exhibit significantly improved antimicrobial activity than rifampin against Mycobacterium smegmatis. Further characterization of such compounds suggests that relatively large groups attached to the rifamycin core via a C25 carbamate linkage prevent inactivation via ribosylation of the C23 alcohol as catalyzed by the endogenous rifampin ADP-ribosyl transferase of M. smegmatis.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2006
BODIPY-erythromycin probes of bacterial ribosomes were designed and synthesized by attaching a BODIPY fluorophore to the 4''- and 9-positions of the erythromycin structure. The probes exhibited excellent binding affinity to bacterial ribosomes and competed with erythromycin and other drugs whose binding sites are in the same vicinity of the 50S subunit. The synthetic fluorescent probe 5 was successfully adapted in our ultra high-throughput screening (uHTS) to identify novel ribosome inhibitors.
View Article and Find Full Text PDFNonribosomal peptide synthetases (NRPSs) make many natural products of clinical importance, but a deeper understanding of the protein domains that compose NRPS assembly lines is required before these megasynthetases can be effectively engineered to produce novel drugs. The N-terminal amide bond-forming condensation (C) domain of the enterobactin NRPS EntF was excised from the multidomain synthetase using endpoints determined from sequence alignments and secondary structure predictions. The isolated domain was well-folded when compared by circular dichroism to the vibriobactin NRPS VibH, a naturally free-standing C domain.
View Article and Find Full Text PDF