Publications by authors named "Eric D Nacsa"

A free-radical approach has enabled the development of a synthetically versatile alkyl-(hetero)arylation of olefins. Alkyl and (hetero)aryl groups were added concurrently to a full suite of mono- to tetrasubstituted simple alkenes (, without requiring directing or electronically activating groups) for the first time. Key advances also included the introduction of synthetically diversifiable alkyl groups featuring different degrees of substitution, good diastereocontrol in both cyclic and acyclic settings, the addition of biologically valuable heteroarenes featuring Lewis basic nitrogen atoms as well as simple benzenes, and the generation of either tertiary or quaternary benzylic centers.

View Article and Find Full Text PDF

An electrochemical approach has been leveraged to underpin a new conceptual platform for dehydration reactions, which has been demonstrated in the context of esterification. Esters were prepared from the corresponding acid and alcohol partners at room temperature without acid or base additives and without consuming stoichiometric reagents. This methodology therefore addresses key complications that plague esterification and dehydration reactions more broadly and that represent a leading challenge in synthetic chemistry.

View Article and Find Full Text PDF

Nature routinely engages alcohols as leaving groups, as DNA biosynthesis relies on the removal of water from ribonucleoside diphosphates by a radical-mediated "spin-center shift" (SCS) mechanism. Alcohols, however, remain underused as alkylating agents in synthetic chemistry due to their low reactivity in two-electron pathways. We report herein an enantioselective α-benzylation of aldehydes using alcohols as alkylating agents based on the mechanistic principle of spin-center shift.

View Article and Find Full Text PDF

The synthesis and characterization of six new classes of higher-order superbases, including five that incorporate cyclopropenimine functionality, has been achieved. We propose a nomenclature that designates these as the CG2, GC2, PC3, PC1, C3, and GP2 classes of superbases. The pK(BH+) values were measured to be between 29.

View Article and Find Full Text PDF

Bimolecular nucleophilic substitution reactions of alcohols are fundamentally important transformations in organic chemistry yet, to date, they are relatively underdeveloped with respect to catalysis. This Article describes the emerging area of catalytic SN2 reactions with specific emphasis on the design and development of phosphorus(V) and cyclopropenone-based catalytic SN2 reactions of alcohols.

View Article and Find Full Text PDF

The cyclopropenone catalyzed nucleophilic substitution of alcohols by methanesulfonate ion with inversion of configuration is described. This work provides an alternative to the Mitsunobu reaction that avoids the use of azodicarboxylates and generation of hydrazine and phosphine oxide byproducts. This transformation is shown to be compatible with a range of functionality.

View Article and Find Full Text PDF