In our effort to elucidate the systems biology of the model organism, Escherichia coli, we have developed a mathematical model that simulates the allosteric regulation for threonine biosynthesis pathway starting from aspartate. To achieve this goal, we used kMech, a Cellerator language extension that describes enzyme mechanisms for the mathematical modeling of metabolic pathways. These mechanisms are converted by Cellerator into ordinary differential equations (ODEs) solvable by Mathematica.
View Article and Find Full Text PDFProc IEEE Comput Syst Bioinform Conf
May 2007
In our effort to elucidate the systems biology of the model organism, Escherichia coli, we have developed a mathematical model that simulates the allosteric regulation for threonine biosynthesis pathway starting from aspartate. To achieve this goal, we used kMech, a Cellerator language extension that describes enzyme mechanisms for the mathematical modeling of metabolic pathways. These mechanisms are converted by Cellerator into ordinary differential equations (ODEs) solvable by Mathematica.
View Article and Find Full Text PDFAs a first step toward the elucidation of the systems biology of the model organism Escherichia coli, it was our goal to mathematically model a metabolic system of intermediate complexity, namely the well studied end product-regulated pathways for the biosynthesis of the branched chain amino acids L-isoleucine, L-valine, and L-leucine. This has been accomplished with the use of kMech (Yang, C.-R.
View Article and Find Full Text PDFMotivation: As a first step toward the elucidation of the systems biology of complex biological systems, it was our goal to mathematically model common enzyme catalytic and regulatory mechanisms that repeatedly appear in biological processes such as signal transduction and metabolic pathways.
Results: We describe kMech, a Cellerator language extension that describes a suite of enzyme mechanisms. Each enzyme mechanism is parsed by kMech into a set of fundamental association-dissociation reactions that are translated by Cellerator into ordinary differential equations that are numerically solved by Mathematica.
Cellerator describes single and multi-cellular signal transduction networks (STN) with a compact, optionally palette-driven, arrow-based notation to represent biochemical reactions and transcriptional activation. Multi-compartment systems are represented as graphs with STNs embedded in each node. Interactions include mass-action, enzymatic, allosteric and connectionist models.
View Article and Find Full Text PDF