Dispersion management is critical in many optical applications, whether to reduce impairments in fiber optic communication or chirp pulse amplification, or to create time stretch instruments for single-shot continuous recording of fast phenomena. The most common solutions for achieving large dispersion with low loss include dispersion compensation fiber, fiber Bragg grating, and diffraction grating pairs. Such dispersive elements have finite operational bandwidth, limited total dispersion, or insufficient power handling.
View Article and Find Full Text PDFImproving the efficiency, cell survival, and throughput of methods to modify and control the genetic expression of cells is of great benefit to biology and medicine. We investigate, both computationally and experimentally, a nanostructured substrate made of tipless pyramids for plasmonic-induced transfection. By optimizing the geometrical parameters for an excitation wavelength of 800 nm, we demonstrate a 100-fold intensity enhancement of the electric near field at the cell-substrate contact area, while the low absorption typical for gold is maintained.
View Article and Find Full Text PDFFrequency domain fluorescence lifetime imaging is a powerful technique that enables the observation of subtle changes in the molecular environment of a fluorescent probe. This technique works by measuring the phase delay between the optical emission and excitation of fluorophores as a function of modulation frequency. However, high-resolution measurements are time consuming, as the excitation modulation frequency must be swept, and faster low-resolution measurements at a single frequency are prone to large errors.
View Article and Find Full Text PDFPorous silicon nanoparticles (PSiNPs) are attractive carriers for targeted drug delivery in nanomedicine. For in vivo applications, the biodegradation property of PSiNPs provides a pathway for their safe clearance from the body. Particles sizes of 80-120 nm are of particular interest as they are important for cellular applications, such as drug delivery for cancer therapy, because these nanoparticles can take advantage of the enhanced permeability and retention effect to deliver drug preferentially to tumors with leaky vasculature, yet large enough to avoid renal clearance.
View Article and Find Full Text PDFHigh-throughput real-time optical integrators are of great importance for applications that require ultrafast optical information processing, such as real-time phase reconstruction of ultrashort optical pulses. In many of these applications, integration of wide optical bandwidth signals is required. Unfortunately, conventional all-optical integrators based on passive devices are usually sensitive to the wavelength and bandwidth of the optical carrier.
View Article and Find Full Text PDFThe ability to control chromatic dispersion is paramount in applications where the optical pulsewidth is critical, such as chirped pulse amplification and fiber optic communications. Typically, devices used to generate large amounts (>100 ps/nm) of chromatic dispersion are based on diffraction gratings, chirped fiber Bragg gratings, or dispersion compensating fiber. Unfortunately, these dispersive elements suffer from one or more of the following restrictions: (i) limited operational bandwidth, (ii) limited total dispersion, (iii) low peak power handling, or (iv) large spatial footprint.
View Article and Find Full Text PDFJ Am Chem Soc
November 2009
We present a method for improving femtomole-level trace detection (10(9) molecules) using large-area surface-enhanced Raman scattering (SERS) substrates. Using multiphoton-induced exposure of a commercial photoresist, we physically limit the available molecular adsorption sites to only the electromagnetic "hot spots" on the substrate. This process prevents molecules from adsorbing to sites of weak SERS enhancement, while permitting adsorption to sites of extraordinary SERS enhancement.
View Article and Find Full Text PDFWe present a new type of surface-enhanced Raman scattering (SERS) substrate that exhibits extremely large and uniform cross-section enhancements over a macroscopic (greater than 25 mm2) area. The substrates are fabricated using a femtosecond laser nanostructuring process, followed by thermal deposition of silver. SERS signals from adsorbed molecules show a spatially uniform enhancement factor of approximately 10(7).
View Article and Find Full Text PDF