Objectives: Large language models (LLMs) have shown potential in radiology, but their ability to aid radiologists in interpreting imaging studies remains unexplored. We investigated the effects of a state-of-the-art LLM (GPT-4) on the radiologists' diagnostic workflow.
Materials And Methods: In this retrospective study, six radiologists of different experience levels read 40 selected radiographic [n = 10], CT [n = 10], MRI [n = 10], and angiographic [n = 10] studies unassisted (session one) and assisted by GPT-4 (session two).