Publications by authors named "Eric Conti"

Agroclimatic variables may affect insect and plant phenology, with unpredictable effects on pest populations and crop losses. Rossi (Diptera: Tephritidae) is a specific pest of plants that can cause annual economic losses of more than one billion US dollars in the Mediterranean region. In this study, we aimed at understanding the effect of olive tree phenology and other agroclimatic variables on infestation dynamics in the Umbria region (Central Italy).

View Article and Find Full Text PDF

The brown marmorated stink bug, (Stål), is an invasive species causing economic crop losses. This species was recently detected attacking olive fruits. The aim of this study was to characterize feeding damage.

View Article and Find Full Text PDF

The Cicadomorpha and are known transmitters of the bacterium . Here, we studied the ultrastructural organization of their cephalic glands. Our investigations with scanning, transmission, focused ion beam-scanning electron microscopes and light microscope revealed for the first time in Auchenorrhyncha the presence of two types of cephalic glands.

View Article and Find Full Text PDF

Capture strategies for the brown marmorated stink bug, (Hemiptera: Pentatomidae), are challenging. Here we developed and evaluated a multimodal trap which combines visual and olfactory stimuli. Visual stimuli consisted of LEDs emitting UV-A and visible light.

View Article and Find Full Text PDF

The meadow spittlebug, Philaenus spumarius L. (Hemiptera: Auchenorrhyncha: Aphrophoridae), is the main vector of Xylella fastidiosa subsp. pauca strain ST53, the causal agent of the Olive Quick Decline Syndrome.

View Article and Find Full Text PDF

The olive fruit fly, , is the key pest of olive trees in several areas of the world. Given the need for the development of sustainable control methods, preventive tools, based on the manipulation of pest behaviour, must be considered. Here, under field and laboratory conditions, we tested the efficacy of different products in preventing infestation.

View Article and Find Full Text PDF

In crop systems, successful management of invasive insect herbivores can be achieved through the introduction of exotic biocontrol agents, parasitoids or predators, having a coevolutionary history with the pest. To avert threats to local biodiversity, recent legislations require a risk assessment for the organism to be released. Evaluation of its ability to exploit, for host location, odours associated with target and non-target species is crucial for a better definition of its ecological host range.

View Article and Find Full Text PDF
Article Synopsis
  • Next-generation sequencing has greatly increased data on enzyme sequences, many of which are unstudied but could enhance understanding of enzyme evolution.
  • Integrating teaching and research in college can help characterize numerous enzymes, particularly focusing on SABATH methyltransferases that convert salicylic acid into methyl salicylate.
  • The study shows that there's a strong conservation of substrate preference in SA methyltransferases, with specific genetic features influencing their function, but many sequences still await analysis, indicating vast potential for future research.
View Article and Find Full Text PDF

Background: The detection of environmental cues and signals via the sensory system directs behavioral choices in diverse organisms. Insect larvae rely on input from the chemosensory system, mainly olfaction, for locating food sources. In several lepidopteran species, foraging behavior and food preferences change across larval instars; however, the molecular mechanisms underlying such behavioral plasticity during larval development are not fully understood.

View Article and Find Full Text PDF

The data presented here are related to the article titled "Microplastics alter behavioural responses of an insect herbivore to a plant-soil system" by Rondoni, G., Chierici, E., Agnelli, A.

View Article and Find Full Text PDF

In predatory ladybirds (Coleoptera: Coccinellidae), antennae are important for chemosensory reception used during food and mate location, and for finding a suitable oviposition habitat. Based on NextSeq 550 Illumina sequencing, we assembled the antennal transcriptome of mated (Pallas) (Coleoptera: Coccinellidae) males and females and described the first chemosensory gene repertoire expressed in this species. We annotated candidate chemosensory sequences encoding 26 odorant receptors (including the coreceptor, Orco), 17 gustatory receptors, 27 ionotropic receptors, 31 odorant-binding proteins, 12 chemosensory proteins, and 4 sensory neuron membrane proteins.

View Article and Find Full Text PDF

Animals have evolved the capacity to learn, and the conventional view is that learning allows individuals to improve foraging decisions. The parasitoid Telenomus podisi has been shown to parasitize eggs of the exotic stink bug Halyomorpha halys at the same rate as eggs of its coevolved host, Podisus maculiventris, but the parasitoid cannot complete its development in the exotic species. We hypothesized that T.

View Article and Find Full Text PDF

The data presented here are related to the article entitled "Soil functions are affected by transition from conventional to organic mulch-based cropping system"[1]. Data were collected in 2016 in a processing tomato field located near Perugia, Italy. In details, data were collected in three differently managed processing tomato cropping systems: conventional integrated (INT); traditional organic with cover crops and conventional tillage (ORG); and organic coupled with conservation agriculture, with mulch-based cover crop and no-tillage (ORG+).

View Article and Find Full Text PDF

Egg parasitoids have evolved adaptations to exploit host-associated cues, especially oviposition-induced plant volatiles and odors of gravid females, when foraging for hosts. The entire host selection process is critical for successful parasitism and relevant in defining host specificity of parasitoids. We hypothesized that naïve egg parasitoid females reared on their coevolved host are able to exploit cues related to the coevolved host but not those from a novel host.

View Article and Find Full Text PDF

Insect parasitoids are under selection pressure to optimize their host location strategy in order to maximize fitness. In parasitoid species that develop on host eggs, one of these strategies consists in the exploitation of oviposition-induced plant volatiles (OIPVs), specific blends of volatile organic compounds released by plants in response to egg deposition by herbivorous insects. Plants can recognize insect oviposition via elicitors that trigger OIPVs, but very few elicitors have been characterized so far.

View Article and Find Full Text PDF

Despite the fact that natural enemies can synergistically contribute to herbivore pest suppression, sometimes predators engage in intraguild predation (IGP) that might dampen trophic cascades. DNA-based gut-content analysis has become common in assessing trophic connections and biocontrol potential by predators in field systems. Here, we developed a molecular technique that can be used to unravel predation among two ladybirds, Coccinella septempunctata and Hippodamia variegata, and their shared prey, Aphis gossypii.

View Article and Find Full Text PDF

Plants respond to insect attack by emission of volatile organic compounds, which recruit natural enemies of the attacking herbivore, constituting an indirect plant defence strategy. In this context, the egg parasitoid is attracted by oviposition-induced plant volatiles emitted by plants as a consequence of feeding and oviposition by the pentatomid host However, this local tritrophic web could be affected by the recent invasion by the alien pentatomid bug , an herbivore that shares the same environments as native pentatomid pests. Therefore, we investigated in laboratory conditions the possible impact of on the plant volatile-mediated signalling in the local tritrophic web --.

View Article and Find Full Text PDF

Understanding the traits that might be linked with biological invasions represents a great challenge for preventing non-target effects on local biodiversity. In predatory insects, the ability to exploit habitats for oviposition and the physiological response to prey availability differs between species. Those species that respond more readily to environmental changes may confer to their offspring a competitive advantage over other species.

View Article and Find Full Text PDF

Several phases of herbivorous insect attack including feeding and oviposition are known to induce plant defenses. Plants emit volatiles induced by herbivores to recruit insect parasitoids as an indirect defense strategy. So far, volatiles induced by herbivore walking and their putative role in the foraging behavior of egg parasitoids have not been investigated.

View Article and Find Full Text PDF

Taste allows insects to detect palatable or toxic foods, identify a mate, and select appropriate oviposition sites. The gustatory system strongly contributes to the survival and reproductive success of many species, yet it is rarely studied in insect parasitoids. In order to locate and assess a host in which they will lay their eggs, female wasps actively search for chemical cues using their sensory organs present mainly on the antennae.

View Article and Find Full Text PDF

Animals can adjust their behaviour according to previous experience gained during foraging. In parasitoids, experience plays a key role in host location, a hierarchical process in which air-borne and substrate-borne semiochemicals are used to find hosts. In nature, chemical traces deposited by herbivore hosts when walking on the plant are adsorbed by leaf surfaces and perceived as substrate-borne semiochemicals by parasitoids.

View Article and Find Full Text PDF

In polymorphic damselflies discrimination of females from males is complex owing to the presence of androchrome and gynochrome females. To date there is no evidence that damselflies use sensory modalities other than vision (and tactile stimuli) in mate searching and sex recognition. The results of the present behavioural and electrophysiological investigations on Ischnura elegans, a polymorphic damselfly, support our hypothesis that chemical cues could be involved in Odonata sex recognition.

View Article and Find Full Text PDF

Trissolcus brochymenae (Hymenoptera: Platygastridae) is an egg parasitoid that could be used to control stink bugs like Murgantia histrionica (Heteroptera: Pentatomidae), a pest of brassicaceous crops. Before laying their eggs, parasitoid females spend considerable time examining the substrate with their antennae, which are also used during feeding and mating behaviours. This suggests that contact chemoreception plays a prominent role in many aspects of parasitoid ecology.

View Article and Find Full Text PDF

Plants respond to insect oviposition by emission of oviposition-induced plant volatiles (OIPVs) which can recruit egg parasitoids of the attacking herbivore. To date, studies demonstrating egg parasitoid attraction to OIPVs have been carried out in tritrophic systems consisting of one species each of plant, herbivore host, and the associated egg parasitoid. Less attention has been given to plants experiencing multiple attacks by host and non-host herbivores that potentially could interfere with the recruitment of egg parasitoids as a result of modifications to the OIPV blend.

View Article and Find Full Text PDF

Volatile chemicals mediate a great range of intra- and interspecific signalling and information in insects. Olfaction has been widely investigated mostly in Neoptera while the knowledge of this sense in most basal insects such as Paleoptera (Odonata and Ephemeroptera) is still poor. In the present study we show the results of an electrophysiological screening on two model species, Libellula depressa (Libellulidae) and Ischnura elegans (Coenagrionidae), representatives of the two Odonata suborders Anisoptera and Zygoptera, with the aim to deep the knowledge on the sense of smell of this insect order.

View Article and Find Full Text PDF