Incorporation of silicate ions in calcium phosphate ceramics (CPC) and modification of their multiscale architecture are two strategies for improving the vascularization of scaffolds for bone regenerative medicine. The response of endothelial cells, actors for vascularization, to the chemical and physical cues of biomaterial surfaces is little documented, although essential. We aimed to characterize in vitro the response of an endothelial cell line, C166, cultivated on the surface CPCs varying either in terms of their chemistry (pure versus silicon-doped HA) or their microstructure (dense versus microporous).
View Article and Find Full Text PDFThe purpose of the study was to investigate the synthesis of economic calcium phosphate powders from recycled oyster shells, using a ball milling method. The oyster shell powder and a calcium pyrophosphate powder were used as starting materials and ball milled, then heat treated at 1,050°C for 5 h to produce calcium phosphate powders through a solid-state reaction. Electrochemically synthesized mesoporous silicon microparticles were then added to the prepared phosphate powders by mechanical mixer.
View Article and Find Full Text PDFIn this fundamental solid-state chemistry study, two sample series were investigated in depth: iron(III)-doped hydroxyapatite (HA) compounds obtained from a co-sintering process of hematite and pure HA under air and iron(III)-doped HA compounds obtained from a co-sintering process from iron(II) acetate and pure HA under an argon atmosphere. X-ray diffraction, UV-visible, Fourier transform infrared, H and P NMR, electron paramagnetic resonance (EPR,) and Mössbauer spectroscopy methods were coupled to unravel the Fe valence states, the interactions with other anionic species (OH and PO), and finally the complex local environments in hexagonal channels in both the series. In particular, we highlighted the associated mechanism to ensure electroneutrality with a focus on deprotonation versus calcium substitution.
View Article and Find Full Text PDFTo bring osteoinductive properties to calcium phosphate (CaP) bioceramics, a silicon-substituted hydroxyapatite was functionalized by integrin-adhesive cyclic-pentapeptides (c-(DfKRG)). A new two-step protocol was set up to immobilize peptides at low and controlled density on the ceramic surface and limit contamination by adsorbed molecules. To this aim, a spacer bearing c-(DfKRG)-S-PEG-NHS molecule was synthesized and bonded to an organosilane previously covalently bonded to the ceramic surface.
View Article and Find Full Text PDFSilicate-substituted hydroxyapatite scaffolds containing multiscale porosity are manufactured. Model parts containing macropores of five cross-sectional geometries (circle, square, rhombus, star and triangle) and two sizes are shaped by microstereolithography. Three open microporosity contents (0.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2019
This work is devoted to the processing of bone morphogenetic protein (BMP-2) functionalized silicate substituted hydroxyapatite (SiHA) ceramic spheres. The motivation behind it is to develop injectable hydrogel/bioceramic composites for bone reconstruction applications. SiHA microspheres were shaped by spray drying and thoroughly characterized.
View Article and Find Full Text PDFEffective treatment of critical-size defects is a key challenge in restorative surgery of bone. The strategy covers the implantation of biocompatible, osteoconductive, bioactive and biodegradable devices which (1) well interact with native tissue, mimic multi-dimensional and hierarchical structure of bone and (2) are able to enhance bone repair, treating post implantation pathologies or bone diseases by local delivery of therapeutic agents. Among different options, calcium phosphate biomaterials are found to be attractive choices, due to their excellent biocompatibility, customisable bioactivity and biodegradability.
View Article and Find Full Text PDFAbstarctInfections after bone reconstructive surgery are a real therapeutic and economic issue for the modern health care system. As the pathogen (most often Staphylococcus aureus) is able to develop a biofilm inside the bone, local delivery of antibiotics is of interest since high drug concentrations would be delivered directly at the target place. In this context, this study evaluated a porous hydroxyapatite implant as biocompatible bone substitute and vancomycin-delivery system to prevent post-operative infections.
View Article and Find Full Text PDFUnlabelled: The development of scaffolds for bone filling of large defects requires an understanding of angiogenesis and vascular guidance, which are crucial processes for bone formation and healing. There are few investigations on the ability of a scaffold to support blood vessel guidance and it this is of great importance because it relates to the quality and dispersion of the blood vessel network. This work reports an analysis of vascularisation of porous silicon-substituted hydroxyapatite (SiHA) bioceramics and the effects of pore shape on vascular guidance using an expedient ex ovo model, the chick embryo chorioallantoic membrane (CAM) assay.
View Article and Find Full Text PDFCalcium phosphate bone substitute materials can be loaded with active substances for , targeted drug administration. In this study, porous β-TCP pellets were investigated as an anti-inflammatory drug carrier. Porous β-TCP pellets were impregnated with an ethanolic solution of ibuprofen.
View Article and Find Full Text PDFNanocrystalline apatites analogous to bone mineral are very promising materials for the preparation of highly bioactive ceramics due to their unique intrinsic physico-chemical characteristics. Their surface reactivity is indeed linked to the presence of a metastable hydrated layer on the surface of the nanocrystals. Yet the sintering of such apatites by conventional techniques, at high temperature, strongly alters their physico-chemical characteristics and biological properties, which points out the need for "softer" sintering processes limiting such alterations.
View Article and Find Full Text PDFSilicated hydroxyapatite powders (Ca10(PO4)(6-x)(SiO4)x(OH)(2-x); Si(x)HA) were synthesized using a wet precipitation method. The sintering of Si(x)HA ceramics with 0 < or = x < or = 1 was investigated. For 0 < or = x < or = 0.
View Article and Find Full Text PDFJ Biomed Mater Res A
August 2006
Microstructure of calcium phosphate ceramics has been shown to influence long-term in vitro cellular events like proliferation and differentiation, and to favor bone integration in vivo. As long-term cellular events are known to be dependent of early cell adhesion events, we decided to study the in vitro influence of the microstructure of a microporous hydroxyapatite (mHA) and a nonmicroporous hydroxyapatite (pHA) ceramic on serum protein adsorption and SaOs-2 human bone cells attachment after 30 min, 1, 4, and 24 h and cell growth after 96 h. Plastic coverslips were used as controls.
View Article and Find Full Text PDFThe capacity of hydroxyapatite (HAp) to remove lead from aqueous solution was investigated under different conditions, namely initial metal ion concentration and reaction time. The sorption of lead from solutions containing initial concentrations from 0 to 8000 mg/L was studied for three different HAp powders. Soluble Pb and Ca monitoring during the experiment allows characterizing the mechanism of lead uptake.
View Article and Find Full Text PDFThis study deals with the mechanism of the cadmium uptake by synthetic hydroxyapatite (HA: Ca10(PO4)6(OH)2) in aqueous solution. The rate of cadmium fixation by hydroxyapatite was investigated at 10 and 50 degrees C using batch experiments. Inductively coupled plasma atomic emission spectrometry, X-ray diffraction, FT-IR spectroscopy and electron microscopy were used to characterize the starting HA and the samples.
View Article and Find Full Text PDFLittle information was found in the literature about the expression on hydroxyapatite (HA) materials of genes specific of cellular adhesion molecules although more were found on titanium-based substrates. Hence, the goal of this work was to study by a kinetic approach from 30 min to 4 days the adhesion of Saos-2 cells on microporous (mHA) and non-microporous hydroxyapatite (pHA) in comparison to polished titanium. Our strategy associated the visualization of adhesion proteins inside the cells by immunohistochemistry and the quantitative expression of genes at mRNA level by real-time PCR.
View Article and Find Full Text PDFIt was observed that fibronectin precipitates when deposited on hydroxyapatite (HA) ceramics. Fibronectin's known affinity for calcium and the composition of the ceramic itself suggested that calcium release could be the main cause of this aggregation effect. It was then decided to investigate the effect of a surface chelation treatment on fibronectin adsorption, and MG63 cell adhesion, onto porous ceramics of hydroxyapatite (HA), beta-tricalcium phosphate (beta-TCP), and HA/TCP biphasic material (BCP).
View Article and Find Full Text PDF