Publications by authors named "Eric Chainet"

The first instance of an acidic aqueous biphasic system (AcABS) based on tributyltetradecyl phosphonium chloride ([P ][Cl]) and an acid is here reported. This AcABS exhibits pronounced thermomorphic behavior and is shown to be applicable to the extraction of metal ions from concentrated acidic solutions. Metal ions such as cobalt(II), iron(III), platinum(IV) and nickel(II) are found to partition preferentially to one of the phases of the acidic aqueous biphasic system and it is here shown that it successfully allows the difficult separation of Co from Ni , here studied at 24 and 50 °C.

View Article and Find Full Text PDF

An investigation on a process designed for separating Pt(IV) and Pd(II) dissolved in acidic aqueous solution containing HCl using two ionic liquids, 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([OMIM][NTf2]) and trihexyltetradecylphosphonium bromide (Cyphos 102), is presented. To this end, the single extraction of platinum in [OMIM][NTf2] has been investigated as a function of the initial concentration of Pt(IV) ions dissolved in 1 M HCl. The distribution coefficient for Pt(IV), present in water as a PtCl6(2-) anion, decreases with the concentration of Pt(IV).

View Article and Find Full Text PDF

Nanoporous SnO2 thin films were elaborated to serve as sensing electrodes for label-free DNA detection using electrochemical impedance spectroscopy (EIS). Films were deposited by an electrodeposition process (EDP). Then the non-Faradic EIS behaviour was thoroughly investigated during some different steps of functionalization up to DNA hybridization.

View Article and Find Full Text PDF

This paper is devoted to an alternative method to characterize platinum nanoparticles: X-ray powder diffraction with synchrotron radiation in classical and anomalous dispersion modes. We could straightforwardly determine the mean diameter and the surface concentration of carbon-supported platinum nanoparticles, even down to diameters of 2-3 nm and catalyst amounts of 0.03 mgcm(-2).

View Article and Find Full Text PDF