Doped conjugated polymers have a variety of potential applications in thermoelectric and other electronic devices, but the nature of their electronic structure is still not well understood. In this work, we use time-dependent density functional theory (TD-DFT) calculations along with natural transition orbital (NTO) analysis to understand electronic structures of both p-type (e.g.
View Article and Find Full Text PDFAutonomic nervous system (ANS) dysfunction is prevalent in end-stage kidney disease (ESKD) patients, carrying significant risks for morbidity and mortality. Heart rate variability (HRV) is a simple and non-invasive method to evaluate ANS functions and predict prognoses in specific patient populations. Since there is a lack of a clear understanding of the clinical significance of HRV in predicting prognoses in ESKD patients, an updated review on this topic is urgently warranted.
View Article and Find Full Text PDFConjugated polymers are a versatile class of electronic materials featured in a variety of next-generation electronic devices. The utility of such polymers is contingent in large part on their electrical conductivity, which depends both on the density of charge carriers (polarons) and on the carrier mobility. Carrier mobility, in turn, is largely controlled by the separation between the polarons and dopant counterions, as counterions can produce Coulombic traps.
View Article and Find Full Text PDFPolarons and bipolarons are created when one or two electrons are removed from the π-system of a -type conjugated polymer, respectively. In the traditional band picture, the creation of a polaron causes two electronic energy levels to move into the band gap. The removal of a second electron to form a bipolaron causes the two intragap states to move further into the gap.
View Article and Find Full Text PDFIt is well-known that when excess electrons are injected into an aqueous solution, they localize and solvate in ∼1 ps. Still debated is whether localization occurs via "trap-digging", in which the electron carves out a suitable localization site, or by "trap-seeking", where the electron prefers to localize at pre-existing low-energy trap sites in solution. To distinguish between these two possible mechanisms, we study the localization dynamics of excess electrons in aqueous NaCl solutions using both ultrafast spectroscopy and mixed quantum-classical molecular dynamics simulations.
View Article and Find Full Text PDFMolecular dopants such as 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (FTCNQ) can interact with conjugated polymers such as poly(3-hexylthiophene-2,5-diyl) (P3HT) in two different ways: they can undergo integer charge transfer (ICT) or they can form a partial-charge-transfer complex (CTC). Both are seen experimentally, but the CTC has been challenging to characterize, making it difficult to answer questions such as the following. Which polymorph is more stable? Do they have similar barriers for formation? Is there a thermodynamic route to convert one to the other? Here, we study the structure and the thermodynamics of bulk FTCNQ-doped P3HT with all-atom molecular dynamics simulations, using thermodynamic integration to calculate the relative free energies.
View Article and Find Full Text PDFTwo-dimensional electronic-vibrational (2DEV) spectroscopy is a new coherent spectroscopic technique, which shows considerable promise for unravelling complex molecular dynamics. In this Discussion we describe an application to the energy transfer pathway in the major light harvesting protein, LHCII, providing new data on the center line slopes (CLS) of the spectral peaks. The CLS provides information that appears unique to the 2DEV method.
View Article and Find Full Text PDFThe relaxation from the lowest singlet excited state of the triphenylmethane dyes, crystal violet and malachite green, is studied via two-dimensional electronic-vibrational (2DEV) spectroscopy. After excitation of the dyes at their respective absorption maxima, the ensuing excited state dynamics are tracked by monitoring the C[double bond, length as m-dash]C aromatic stretch. With the aid of electronic structure calculations, the observed transitions in the 2DEV spectra are assigned to specific geometries and a detailed story of the evolution of the nuclear wavepacket as it diffuses on the excited state potential energy surface (PES) and ultimately passes through the conical intersection is developed.
View Article and Find Full Text PDFThe aggregation of conjugated polymers in common organic solvents is investigated using fluorescence correlation spectroscopy (FCS), burst analysis, and microscopy. Poly(3-hexylthiophene) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] are both shown to form weakly bonded non-emissive aggregates in toluene that persist even at picomolar concentrations. These aggregates decrease the bulk emission intensity in solution but do not affect the fluorescence spectra or lifetimes, consistent with a static quenching mechanism.
View Article and Find Full Text PDFThe structure of ionic liquids (ILs) surrounding solute dyes and the effects of solvent structure on solute diffusion have been investigated using molecular dynamics (MD) and the experimental tools of confocal and fluorescence correlation spectroscopies. Although confocal microscopy and simulations show that the local environment around solutes in ILs is heterogeneous and that the structural heterogeneity is rather long-lived, the local polarity and the diffusion constant were found to be uncorrelated. Moreover, the complex diffusion observed experimentally is not due to the structural heterogeneity of the IL but rather due to the dynamic heterogeneity arising from the viscous glassy nature of the IL environment.
View Article and Find Full Text PDFEffects of temperature on Stokes shifts, solvation structure, and dynamics in ionic liquids EMI(+)Tf2N(-), EMI(+)PF6(-), and BMI(+)PF6(-) (EMI(+) = 1-ethyl-3-methylimidazolium, BMI(+) = 1-butyl-3-methylimidazolium, Tf2N(-) = bis(trifluoromethylsulfonyl)imide, and PF6(-) = hexafluorophosphate) are investigated via molecular dynamics (MD) computer simulations in the temperature range 350 K ≤ T ≤ 500 K. Two different types of solutes are considered: a simple model diatomic solute and realistic coumarin 153, both of which are characterized by more polar S1 and less polar S0 states. In all three ionic liquids studied, the Stokes shift tends to decrease with increasing temperature.
View Article and Find Full Text PDFSemitheoretical Brönsted correlations are compared between previously measured experimental rates of hydrogen isotope exchange of substituted toluenes labeled in the α-position and relative equilibrium acidities computed at several theory levels. The Brönsted correlations show less scatter at the Hartree-Fock level than at higher theory levels. This effect is rationalized on the basis of enhanced steric effects in the more constrained structures of the higher theory levels.
View Article and Find Full Text PDFHeliothis zea nudivirus-1 (HzNV-1) is an insect virus previously known as Hz-1 baculovirus. One of its major early genes, hhi1, is responsible for the establishment of productive viral infection; another gene, pag1, which expresses a non-coding RNA, is the only viral transcript detectable during viral latency. Here we showed that this non-coding RNA was further processed into at least two distinct miRNAs, which targeted and degraded hhi1 transcript.
View Article and Find Full Text PDFThe pK of p-(methylamino)biphenyl, 1, on our Li scale, pK(Li) = 22.09, compared to the cesium scale, pK(Cs) = 28.60.
View Article and Find Full Text PDFPurpose: The aim of this study was to analyze the effect of azithromycin (AZM) 1% ophthalmic solution in DuraSite® (AzaSite®) on biofilm formation by Staphylococcus aureus and coagulase-negative staphylococci in vitro.
Methods: Susceptible and resistant clinical strains (n = 8) of S. aureus and coagulase-negative staphylococci were challenged with serial dilutions of AzaSite® and its components: AZM, benzalkonium chloride (BAK), and the DuraSite drug delivery vehicle.
Kinetic acidities of arenes, ArH, measured some time ago by hydrogen isotope exchange kinetics with lithium cyclohexylamide (LiCHA) in cyclohexylamine (CHA) show a wide range of reactivities that involve several electronic mechanisms. These experimental reactivities give an excellent Brønsted correlation with equilibrium lithium ion pair acidities (pK(Li)) derived as shown recently from computations of ArLi.2E (E = dimethyl ether).
View Article and Find Full Text PDF