Publications by authors named "Eric C Peters"

Phosphopantetheine transferases (PPTases) can be used to efficiently prepare site-specific antibody-drug conjugates (ADCs) by enzymatically coupling coenzyme A (CoA)-linker payloads to 11-12 amino acid peptide substrates inserted into antibodies. Here, a two-step strategy is established wherein in a first step, CoA analogs with various bioorthogonal reactivities are enzymatically installed on the antibody for chemical conjugation with a cytotoxic payload in a second step. Because of the high structural similarity of these CoA analogs to the natural PPTase substrate CoA-SH, the first step proceeds very efficiently and enables the use of peptide tags as short as 6 amino acids compared to the 11-12 amino acids required for efficient one-step coupling of the payload molecule.

View Article and Find Full Text PDF

The post-translational modification of serine or threonine residues of proteins with a single N-acetylglucosamine monosaccharide (O-GlcNAcylation) is essential for cell survival and function. However, relatively few O-GlcNAc modification sites have been mapped due to the difficulty of enriching and detecting O-GlcNAcylated peptides from complex samples. Here we describe an improved approach to quantitatively label and enrich O-GlcNAcylated proteins for site identification.

View Article and Find Full Text PDF

The volume-regulated anion channel (VRAC) is activated when a cell swells, and it plays a central role in maintaining cell volume in response to osmotic challenges. SWELL1 (LRRC8A) was recently identified as an essential component of VRAC. However, the identity of the pore-forming subunits of VRAC and how the channel is gated by cell swelling are unknown.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is associated with amino acid variants in multiple MHC molecules. The association to MHC class II (MHC-II) has been studied in several animal models of RA. In most cases these models depend on T cells restricted to a single immunodominant peptide of the immunizing Ag, which does not resemble the autoreactive T cells in RA.

View Article and Find Full Text PDF

Hippo signaling is a tumor-suppressor pathway involved in organ size control and tumorigenesis through the inhibition of YAP and TAZ. Here, we show that energy stress induces YAP cytoplasmic retention and S127 phosphorylation and inhibits YAP transcriptional activity and YAP-dependent transformation. These effects require the central metabolic sensor AMP-activated protein kinase (AMPK) and the upstream Hippo pathway components Lats1/Lats2 and angiomotin-like 1 (AMOTL1).

View Article and Find Full Text PDF

Although fucose-α(1-2)-galactose (Fucα(1-2)Gal)-containing glycans have been implicated in cognitive processes such as learning and memory, their precise molecular mechanisms are poorly understood. Here we employed the use of multivalent glycopolymers to enable the first proteome-wide identification of weak affinity, low abundance Fucα(1-2)Gal glycan-binding proteins (GBPs). Biotin-terminated glycopolymers containing photoactivatable cross-linking groups were designed to capture and enrich GBPs from rat brain lysates.

View Article and Find Full Text PDF

Citrullinated collagen II (CII) is a well-known autoantigen in rheumatoid arthritis (RA). However, the direct effects of CII citrullination on cell behavior have not been described. To study whether citrullination of CII could affect cellular functions, we measured the adhesion of 3 different cell types (human Saos2 osteosarcoma cells, human synovial fibroblasts, and rat mesenchymal stem cells) with impedance-based technology.

View Article and Find Full Text PDF

Objective: To investigate type II collagen (CII) as a joint-specific target of the anti-citrullinated protein antibody (ACPA) response in rheumatoid arthritis (RA).

Methods: Potential citrullinated neoepitopes were identified by high-resolution tandem mass spectrometry (MS/MS) of in vitro peptidylarginine deiminase 2 (PAD-2)-treated CII, and the relationship between citrullination and CII conformation was investigated by circular dichroism and conformation-dependent antibodies. Based on the MS analyses, synthetic peptides were designed and analyzed for serum IgG reactivity in the Epidemiological Investigation of RA (EIRA) case-control cohort of 1,949 RA patients and 278 healthy controls.

View Article and Find Full Text PDF

The transcription factor nuclear factor κB (NF-κB) rapidly reprograms gene expression in response to various stimuli, and its activity is regulated by several posttranslational modifications, including phosphorylation, methylation, and acetylation. The addition of O-linked β-N-acetylglucosamine (a process known as O-GlcNAcylation) is an abundant posttranslational modification that is enhanced in conditions such as hyperglycemia and cellular stress. We report that the NF-κB subunit c-Rel is modified and activated by O-GlcNAcylation.

View Article and Find Full Text PDF

The cell utilizes the Keap1/Nrf2-ARE signaling pathway to detoxify harmful chemicals in order to protect itself from oxidative stress and to maintain its reducing environment. When exposed to oxidative stress and xenobiotic inducers, the redox sensitive Keap1 is covalently modified at specific cysteine residues. Consequently, the latent transcription factor Nrf2 is stabilized and translocates into the nucleus, where it transactivates the expression of detoxification genes through binding to the antioxidant response element (ARE).

View Article and Find Full Text PDF

Retinal pigment epithelial (RPE) cells form a monolayer adjacent to the retina and play a critical role in the visual light cycle. Degeneration of RPE cells results in retinal disorders such as age-related macular degeneration. Cell transplant strategies have potential therapeutic value for such disorders; however, risks associated with an inadequate supply of donor cells limit their therapeutic success.

View Article and Find Full Text PDF

Accumulation of β-amyloid (Aβ) in the brain is believed to contribute to the pathology of Alzheimer's Disease (AD). Aβ levels are controlled by the production of Aβ from amyloid precursor protein, degradation by proteases, and peripheral clearance. In this study we sought to determine whether enhancing clearance of plasma Aβ with a peripherally administered Aβ-degrading protease would reduce brain Aβ levels through a peripheral sink.

View Article and Find Full Text PDF

Cancer cells must satisfy the metabolic demands of rapid cell growth within a continually changing microenvironment. We demonstrated that the dynamic posttranslational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a key metabolic regulator of glucose metabolism. O-GlcNAcylation was induced at serine 529 of phosphofructokinase 1 (PFK1) in response to hypoxia.

View Article and Find Full Text PDF

Hippo signaling represents a tumor suppressor pathway that regulates organ size and tumorigenesis through phosphorylation and inhibition of the transcription coactivator YAP. Here, we show that serum deprivation dramatically induces YAP Ser127 phosphorylation and cytoplasmic retention, independent of cell-cell contact. Through chemical isolation and activity profiling, we identified serum-derived sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) as small molecule activators of YAP.

View Article and Find Full Text PDF

Local control of calcium concentration within neurons is critical for signaling and regulation of synaptic communication in neural circuits. How local control can be achieved in the absence of physical compartmentalization is poorly understood. Challenging examples are provided by nicotinic acetylcholine receptors that contain α7 nicotinic receptor subunits (α7-nAChRs).

View Article and Find Full Text PDF

Chondroitin sulfate proteoglycans (CSPGs) represent a major barrier to regenerating axons in the central nervous system (CNS), but the structural diversity of their polysaccharides has hampered efforts to dissect the structure-activity relationships underlying their physiological activity. By taking advantage of our ability to chemically synthesize specific oligosaccharides, we demonstrate that a sugar epitope on CSPGs, chondroitin sulfate-E (CS-E), potently inhibits axon growth. Removal of the CS-E motif significantly attenuates the inhibitory activity of CSPGs on axon growth.

View Article and Find Full Text PDF

The transcription factor cyclic AMP-response element binding protein (CREB) is a key regulator of many neuronal processes, including brain development, circadian rhythm and long-term memory. Studies of CREB have focused on its phosphorylation, although the diversity of CREB functions in the brain suggests additional forms of regulation. Here we expand on a chemoenzymatic strategy for quantifying glycosylation stoichiometries to characterize the functional roles of CREB glycosylation in neurons.

View Article and Find Full Text PDF

A high-throughput cell-based screen identified a benzothiazole analogue, LH846, which induces period lengthening of the circadian rhythm. Affinity chromatography coupled with mass spectrometry and genomic analysis identified protein kinase CKIδ as the biological target of LH846 (see picture).

View Article and Find Full Text PDF

Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is a G-protein-coupled receptor that is required for humoral immune responses; polymorphisms in the receptor have been associated with inflammatory autoimmune diseases. The natural ligand for EBI2 has been unknown. Here we describe the identification of 7α,25-dihydroxycholesterol (also called 7α,25-OHC or 5-cholesten-3β,7α,25-triol) as a potent and selective agonist of EBI2.

View Article and Find Full Text PDF

Pathogenic Gram-negative bacteria are a major public health concern because they are causative agents of life-threatening hospital-acquired infections. Due to the increasing rates of resistance to available antibiotics, there is an urgent need to develop new drugs. Acetyl-coenzyme A carboxylase (ACCase) is a promising target for the development of novel antibiotics.

View Article and Find Full Text PDF

The circadian clock underlies daily rhythms of diverse physiological processes, and alterations in clock function have been linked to numerous pathologies. To apply chemical biology methods to modulate and dissect the clock mechanism with new chemical probes, we performed a circadian screen of ∼120,000 uncharacterized compounds on human cells containing a circadian reporter. The analysis identified a small molecule that potently lengthens the circadian period in a dose-dependent manner.

View Article and Find Full Text PDF

Candidate antibacterials are usually identified on the basis of their in vitro activity. However, the apparent inhibitory activity of new leads can be misleading because most culture media do not reproduce an environment relevant to infection in vivo. In this study, while screening for novel anti-tuberculars, we uncovered how carbon metabolism can affect antimicrobial activity.

View Article and Find Full Text PDF

Adult neurogenesis occurs in mammals and provides a mechanism for continuous neural plasticity in the brain. However, little is known about the molecular mechanisms regulating hippocampal neural progenitor cells (NPCs) and whether their fate can be pharmacologically modulated to improve neural plasticity and regeneration. Here, we report the characterization of a small molecule (KHS101) that selectively induces a neuronal differentiation phenotype.

View Article and Find Full Text PDF

Eukaryotic cells counteract oxidative and other environmental stress through the activation of Nrf2, the transcription factor that controls the expression of a host of protective enzymes by binding to the antioxidant response element (ARE). The electrophilic molecules that are able to activate Nrf2 and its downstream target genes have demonstrated therapeutic potential in carcinogen-induced tumor models. Using a high-throughput cellular screen, we discovered a class of ARE activator, which we named AI-1, that activates Nrf2 by covalently modifying Keap1, the negative regulator of Nrf2.

View Article and Find Full Text PDF

Fucose-alpha(1-2)-galactose [Fucalpha(1-2)Gal] sugars have been implicated in the molecular mechanisms that underlie neuronal development, learning, and memory. However, an understanding of their precise roles has been hampered by a lack of information regarding Fucalpha(1-2)Gal glycoproteins. Here, we report the first proteomic studies of this plasticity-relevant epitope.

View Article and Find Full Text PDF