Publications by authors named "Eric C Keske"

Indoleamine 2,3-dioxygenase 1 (IDO1) is a promising therapeutic target in cancer immunotherapy and neurological disease. Thus, searching for highly active inhibitors for use in human cancers is now a focus of widespread research and development efforts. In this study, we report the structure-based design of 2-(5-imidazolyl)indole derivatives, a series of novel IDO1 inhibitors which have been designed and synthesized based on our previous study using N1-substituted 5-indoleimidazoles.

View Article and Find Full Text PDF

1,2,3-Triazolylidene-based mesoionic carbene boranes have been synthesized in a convenient one-pot protocol from the corresponding 1,2,3-triazolium salts, base, and borane. Borenium ions are obtained by hydride abstraction and serve as catalysts in mild hydrogenation reactions of imines and unsaturated N-heterocycles at ambient pressure and temperature.

View Article and Find Full Text PDF

Dimeric rhodium N-heterocyclic carbene complexes are demonstrated to be effective catalyst precursors for directed C-H borylation reactions at room temperature. The reactions are highly selective for mono-borylation and can be combined with a one-pot Suzuki-Miyaura coupling to give C-H arylation products with exclusive selectivity for mono-arylation without the requirement for steric blocking groups.

View Article and Find Full Text PDF

Since the first report of thiol-based self-assembled monolayers (SAMs) 30 years ago, these structures have been examined in a huge variety of applications. The oxidative and thermal instabilities of these systems are widely known, however, and are an impediment to their widespread commercial use. Here, we describe the generation of N-heterocyclic carbene (NHC)-based SAMs on gold that demonstrate considerably greater resistance to heat and chemical reagents than the thiol-based counterparts.

View Article and Find Full Text PDF

Rhodium complexes functionalized by N-heterocyclic carbene ligands react with dioxygen to form adducts. Depending on the specifics of the ancillary ligands, oxygen binds to Rh either as a peroxide to form a fully oxidized Rh(III) complex, or as singlet dioxygen in a Rh(I) square planar complex. We have shown through analysis of a series of compounds, some previously published and some novel, that the presence of additional ligands that would support the formation of an octahedral geometry, as typically found with Rh(III) complexes, is critical for formation of the peroxide.

View Article and Find Full Text PDF

The synthesis, structure determination and oxidative stability of novel Rh-NHC complexes which feature pyridine-derived ligands have been described. All complexes described herein were synthesized from common dinuclear precursors of general structure [Rh(NHC)(L)Cl](2), where L is a monodentate olefin. We demonstrate that the use of these precursors is critical for the formation of all complexes since related cyclooctadiene containing precursors ([Rh(NHC)(COD)Cl]) were completely unreactive under identical conditions.

View Article and Find Full Text PDF

Three gases, one crystal: rhodium NHC complexes undergo back-to-back single-crystal-to-single-crystal transformations by selective nonreversible ligand exchange reactions. Slow diffusion of O(2) converts a dinitrogen complex into a dioxygen complex, and CO subsequently replaces O(2).

View Article and Find Full Text PDF