Publications by authors named "Eric C Honert"

Footwear energy storage and return is often suggested as one explanation for metabolic energy savings when running in Advanced Athletic Footwear. However, there is no common understanding of how footwear energy storage and return facilitates changes in muscle and joint kinetics. The purpose of this study was to evaluate the magnitude and timing of foot, footwear and lower limb joint powers and work while running in Advanced and Traditional Athletic Footwear.

View Article and Find Full Text PDF

Introduction: Alpine ski boots enable rapid and precise force transfer between skier and ski while carving. These boots are made of rigid plastic and fit tightly commonly through four buckles. Such a fit can improve speed and control but also pain and discomfort.

View Article and Find Full Text PDF

If validated, in-shoe pressure measuring technology allows for the field-based quantification of running gait, including kinematic and kinetic measures. Different algorithmic methods have been proposed to determine foot contact events from in-shoe pressure insole systems, however, these methods have not been evaluated for accuracy, reliability against a gold standard using running data across different slopes, and speeds. Using data from a plantar pressure measurement system, seven different foot contact event detection algorithms based on pressure signals (pressure sum) were compared to vertical ground reaction force data collected from a force instrumented treadmill.

View Article and Find Full Text PDF

Trail running participation has grown over the last two decades. As a result, there have been an increasing number of studies examining the sport. Despite these increases, there is a lack of understanding regarding the effects of footwear on trail running biomechanics in ecologically valid conditions.

View Article and Find Full Text PDF

There is extreme interest surrounding the influence of advanced running footwear on running performance. The magnitude, timing, and location of mechanical energy storage and return in footwear may elucidate one way footwear influences running performance. However, the complexity of footwear makes it challenging to model footwear energy storage and return during running.

View Article and Find Full Text PDF

Ground reaction forces (GRFs) describe how runners interact with their surroundings and provide the basis for computing inverse dynamics. Wearable technology can predict time-continuous GRFs during walking and running; however, the majority of GRF predictions examine level ground locomotion. The purpose of this manuscript was to predict vertical and anterior-posterior GRFs across different speeds and slopes.

View Article and Find Full Text PDF

Lateral shuffles are common movements in sports and are facilitated by the hip, knee, and ankle joints. Shoe uppers can change ankle kinetics during walking and running. However, it is not known how shoe upper modifications affect ankle kinetics during shuffling.

View Article and Find Full Text PDF

Background: The ankle and foot together contribute to over half of the positive and negative work performed by the lower limbs during running. Yet, little is known about how foot kinetics change throughout a run. The amount of negative foot work may decrease as tibialis anterior (TA) electromyography (EMG) changes throughout longer-duration runs.

View Article and Find Full Text PDF

Time continuous analyses, such as statistical parametric mapping (SPM), have been increasingly used in biomechanics research to determine differences between populations, interventions and methodologies. Currently, it is not known how sensitive time-continuous analyses are to timing variability that occur in gait data. We evaluated this sensitivity by examining the frequency of significant SPM outcomes between two walking speeds when lower limb kinematics and kinetics were segmented and aligned based on 40 repeatable gait events.

View Article and Find Full Text PDF

Providing runners with footwear that match their functional needs has the potential to improve footwear comfort, enhance running performance and reduce the risk of overuse injuries. It is currently not known how footwear experts make decisions about different shoe features and their properties for runners of different levels. We performed a Delphi study in order to understand: 1) definitions of different runner levels, 2) which footwear features are considered important and 3) how these features should be prescribed for runners of different levels.

View Article and Find Full Text PDF

Toe joint articulation has been shown to affect gait mechanics, as evidenced by walking simulations, biped robots, and foot prostheses. However, it is not known how parameters such as toe length, foot arch length (i.e.

View Article and Find Full Text PDF

For studies that aim to assess biological ankle function, calculating ankle joint complex (AJC) power between the calcaneus and shank is recommended over conventional inverse dynamics estimates between a rigid-body foot and shank. However, when designing a new experiment, it remains unclear whether holes should be cut in footwear to permit motion tracking via skin-mounted markers, or whether marker placement locations should be tightly controlled across conditions. Here we provide data to assist researchers in answering these questions.

View Article and Find Full Text PDF

Soft tissues located throughout the human body are known to perform substantial mechanical work through wobbling and deforming, particularly following foot impacts with the ground. Yet, it is not known which specific tissues in the body are responsible for the majority of the soft tissue work. The purpose of this study was to quantify how much of the soft tissue work after foot contact was due to the foot and shoe, vs.

View Article and Find Full Text PDF

During typical human walking, the metatarsophalangeal joints undergo extension/flexion, which we term toe joint articulation. This toe joint articulation impacts locomotor performance, as evidenced by prior studies on prostheses, footwear, sports and humanoid robots. However, a knowledge gap exists in our understanding of how individual toe properties (e.

View Article and Find Full Text PDF

In human gait analysis studies, the entire foot is typically modeled as a single rigid-body segment; however, this neglects power generated/absorbed within the foot. Here we show how treating the entire foot as a rigid body can lead to misunderstandings related to (biological and prosthetic) foot function, and distort our understanding of ankle and muscle-tendon dynamics. We overview various (unconventional) inverse dynamics methods for estimating foot power, partitioning ankle vs.

View Article and Find Full Text PDF

Introduction: Inverse dynamics joint kinetics are often used to infer contributions from underlying groups of muscle-tendon units (MTUs). However, such interpretations are confounded by multiarticular (multi-joint) musculature, which can cause inverse dynamics to over- or under-estimate net MTU power. Misestimation of MTU power could lead to incorrect scientific conclusions, or to empirical estimates that misguide musculoskeletal simulations, assistive device designs, or clinical interventions.

View Article and Find Full Text PDF