Publications by authors named "Eric C Bigham"

The high expression of MCH in the hypothalamus with the lean hypophagic phenotype coupled with increased resting metabolic rate and resistance to high fat diet-induced obesity of MCH KO mice has spurred considerable efforts to develop small molecule MCHR1 antagonists. Starting from a lead thienopyrimidinone series, structure-activity studies at the 3- and 6-positions of the thienopyrimidinone core afforded potent and selective MCHR1 antagonists with representative examples having suitable pharmacokinetic properties. Based on structure-activity relationships, a structural model for MCHR1 was constructed to explain the binding mode of these antagonists.

View Article and Find Full Text PDF

Optimization of a series of constrained melanin-concentrating hormone receptor 1 (MCH R1) antagonists has provided compounds with potent and selective MCH R1 activity. Details of the optimization process are provided and the use of one of the compounds in an animal model of diet-induced obesity is presented.

View Article and Find Full Text PDF

Structure-activity relationships in rhesus monkeys for a novel mixed-onium class of ultra-short-acting nondepolarizing tetrahydroisoquinolinium neuromuscular blockers (NMBs) are described. Bis-onium chlorofumarate 20a with (1R,2S)-benzyltetrahydroisoquinolinium groups was a potent lead compound (ED(95) = 0.079 mg/kg) with an ultra-short duration of NMB effect (7.

View Article and Find Full Text PDF

The structure-activity relationship of 2'-pyrrole, pyrazole and triazole substituted 2-(anilinomethyl)imidazolines as alpha(1) adrenergic agonists was investigated. The size and orientation of substituents, as well as the position of the heteroatoms, were found to have a profound effect on the potency and selectivity of the molecules. Potent alpha(1A) subtype selective agonists have been identified.

View Article and Find Full Text PDF

The high-throughput manual solid-phase parallel synthesis of libraries comprising thousands of discrete samples using pellicular supports (i.e. SynPhase crowns and lanterns) and a suite of novel tools and techniques is described.

View Article and Find Full Text PDF

Literature reports suggest that disruption of an interhelical salt bridge is critical for alpha(1)-adrenoceptor activation, and the basic amine found in adrenergic receptor ligands is responsible for the disruption. Novel 4-(anilinomethyl)imidazoles and 4-(phenoxymethyl)imidazoles are agonists of the cloned human alpha(1)-adrenoceptors in vitro, and potent, selective alpha(1A)-adrenoceptor agonists have been identified in this series. These imidazoles demonstrate similar potencies and alpha(1)-subtype selectivities as the corresponding 2-substituted imidazolines.

View Article and Find Full Text PDF

A series of 2'-alkylthio-2-(anilinomethyl)imidazolines were prepared to examine the effect of the alkyl group size, sulfur oxidation state, and phenyl ring substitution on ligand binding and agonism of alpha-adrenergic receptor subtypes alpha1a, alpha1b, alpha1d, alpha2a, and alpha2c. Binding at all receptor subtypes decreased for compounds in the sulfone oxidation state as compared to their sulfide analogues. While sulfides were generally potent, nonselective agonists, sulfones exhibited alpha1a subtype selectivity in a cell-based functional assay.

View Article and Find Full Text PDF

A series of 2'-heteroaryl and 2'-oxime anilinomethylimidazolines was prepared and evaluated in in vitro functional assays for cloned human alpha1A, alpha1B, and alpha1D receptor subtypes. Potent and selective alpha1A agonists have been identified in these series.

View Article and Find Full Text PDF

Novel 2'-heteroaryl-2-(phenoxymethyl)imidazolines have been identified as potent agonists of the cloned human alpha(1)-adrenoceptors in vitro. The nature of the 2'-heteroaryl group can have significant effects on the potency, efficacy, and subtype selectivity in this series. alpha(1A) Subtype selective agonists have been identified.

View Article and Find Full Text PDF