Publications by authors named "Eric C Andrade"

The Kitaev model is a fascinating example of an exactly solvable model displaying a spin-liquid ground state in two dimensions. However, deviations from the original Kitaev model are expected to appear in real materials. In this Letter, we investigate the fate of Kitaev's spin liquid in the presence of disorder-bond defects or vacancies-for an extended version of the model.

View Article and Find Full Text PDF

We study the impact of quenched disorder (random exchange couplings or site dilution) on easy-plane pyrochlore antiferromagnets. In the clean system, order by disorder selects a magnetically ordered state from a classically degenerate manifold. In the presence of randomness, however, different orders can be chosen locally depending on details of the disorder configuration.

View Article and Find Full Text PDF

The Heisenberg-Kitaev model is a paradigmatic model to describe the magnetism in honeycomb-lattice Mott insulators with strong spin-orbit coupling, such as A_{2}IrO_{3} (A=Na, Li) and α-RuCl_{3}. Here, we study in detail the physics of the Heisenberg-Kitaev model in an external magnetic field. Using a combination of Monte Carlo simulations and spin-wave theory, we map out the classical phase diagram for different directions of the magnetic field.

View Article and Find Full Text PDF

Motivated by the intrinsic non-Fermi-liquid behavior observed in the heavy-fermion quasicrystal Au51Al34Yb15, we study the low-temperature behavior of dilute magnetic impurities placed in metallic quasicrystals. We find that a large fraction of the magnetic moments are not quenched down to very low temperatures T, leading to a power-law distribution of Kondo temperatures P(T(K))∼T(K)(α-1), with a nonuniversal exponent α, in a remarkable similarity to the Kondo-disorder scenario found in disordered heavy-fermion metals. For α<1, the resulting singular P(T(K)) induces non-Fermi-liquid behavior with diverging thermodynamic responses as T→0.

View Article and Find Full Text PDF

For isolated vacancies in ordered local-moment antiferromagnets we show that the magnetic-field linear-response limit is generically singular: The magnetic moment associated with a vacancy in zero field is different from that in a finite field h in the limit h→0(+). The origin is a universal and singular screening cloud, which moreover leads to perfect screening as h→0(+) for magnets which display spin-flop bulk states in the weak-field limit.

View Article and Find Full Text PDF

Hourglass-shaped magnetic excitation spectra have been detected in a variety of doped transition-metal oxides with stripelike charge order. Compared to the predictions of spin-wave theory for perfect stripes, these spectra display a different intensity distribution and anomalous broadening. Here we show, based on a comprehensive modeling for La5/3Sr1/3CoO4, how quenched disorder in the charge sector causes frustration, and consequently cluster-glass behavior at low temperatures, in the spin sector.

View Article and Find Full Text PDF