Publications by authors named "Eric Blankemeyer"

Purpose: Positron emission tomography (PET) image quality can be improved by higher injected activity and/or longer acquisition time, but both may often not be practical in preclinical imaging. Common preclinical radioactive doses (10 MBq) have been shown to cause deterministic changes in biological pathways. Reducing the injected tracer activity and/or shortening the scan time inevitably results in low-count acquisitions which poses a challenge because of the inherent noise introduction.

View Article and Find Full Text PDF

Routine handling and manipulation of laboratory mice are integral components of most preclinical studies. Any type of handling and manipulation may cause stress and result in physical harm to mice, potentially leading to unintended consequences of experimental outcomes. Nevertheless, the pathological effects of these interventions are poorly documented and assumed to have a negligible effect on experimental variables.

View Article and Find Full Text PDF

The MOLECUBES β-CUBE scanner is the newest amongst commercially available preclinical PET scanners for dedicated small animal imaging. The scanner is compact, lightweight and utilizes a small footprint to facilitate bench-top imaging. It can be used individually, or in combination with the X-CUBE CT scanner, which provides the ability to perform all necessary PET data corrections and provide fully quantitative PET images.

View Article and Find Full Text PDF

Glutaminolysis is a metabolic pathway adapted by many aggressive cancers, including triple-negative breast cancers (TNBC), to utilize glutamine for survival and growth. In this study, we examined the utility of [F](2S,4R)4-fluoroglutamine ([F]4F-Gln) PET to measure tumor cellular glutamine pool size, whose change might reveal the pharmacodynamic (PD) effect of drugs targeting this cancer-specific metabolic pathway. High glutaminase (GLS) activity in TNBC tumors resulted in low cellular glutamine pool size assayed via high-resolution H magnetic resonance spectroscopy (MRS).

View Article and Find Full Text PDF

Unlabelled: We report the design, testing, and in vivo application of pH-sensitive contrast agents designed specifically for Cerenkov imaging. Radioisotopes used for PET emit photons via Cerenkov radiation. The multispectral emission of Cerenkov radiation allows for selective bandwidth quenching, in which a band of photons is quenched by absorption by a functional dye.

View Article and Find Full Text PDF

Bismuth nanoparticles have been proposed as a novel CT contrast agent, however few syntheses of biocompatible bismuth nanoparticles have been achieved. We herein report the synthesis of composite bismuth-iron oxide nanoparticles (BION) that are based on a clinically approved, dextran-coated iron oxide formulation; the particles have the advantage of acting as contrast agents for both CT and MRI. BION were synthesized and characterized using various analytical methods.

View Article and Find Full Text PDF

Increased glucose utilization is a hallmark of human cancer that is used to image tumors clinically. In this widely used application, glucose uptake by tumors is monitored by positron emission tomography of the labeled glucose analogue 2[(18)F]fluoro-2-deoxy-D-glucose (FDG). Despite its widespread clinical use, the cellular and molecular mechanisms that determine FDG uptake--and that underlie the heterogeneity observed across cancers-remain poorly understood.

View Article and Find Full Text PDF

Targeting nanoparticles (NPs) loaded with drugs and probes to precise locations in the body may improve the treatment and detection of many diseases. Generally, to achieve targeting, affinity ligands are introduced on the surface of NPs that can bind to molecules present on the cell of interest. Optimization of ligand density is a critical parameter in controlling NP binding to target cells, and a higher ligand density is not always the most effective.

View Article and Find Full Text PDF

Unlabelled: The National Electrical Manufacturers Association (NEMA) standard NU 4-2008 for performance measurements of small-animal tomographs was recently published. Before this standard, there were no standard testing procedures for preclinical PET systems, and manufacturers could not provide clear specifications similar to those available for clinical systems under NEMA NU 2-1994 and 2-2001. Consequently, performance evaluation papers used methods that were modified ad hoc from the clinical PET NEMA standard, thus making comparisons between systems difficult.

View Article and Find Full Text PDF

Targeting of therapeutics or imaging agents to the endothelium has the potential to improve specificity and effectiveness of treatment for many diseases. One strategy to achieve this goal is the use of nanoparticles (NPs) targeted to the endothelium by ligands of protein determinants present on this tissue, including cell adhesion molecules, peptidases, and cell receptors. However, detachment of the radiolabel probes from NPs poses a significant problem.

View Article and Find Full Text PDF

Introduction: The preliminary in vivo evaluation of novel 5-[(18)F]fluoroalkyl-2'-deoxyuridines ([(18)F]FPrDU, [(18)F]FBuDU, [(18)F]FPeDU; [(18)F]1a-c, respectively) and 2'-fluoro-2'-deoxy-5-[(18)F]fluoroalkyl-1-beta-d-arabinofuranosyl uracils ([(18)F]FFPrAU, [(18)F]FFBuAU, [(18)F]FFPeAU; [(18)F]1d-f, respectively) as probes for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene expression is described.

Methods: [(18)F]1a-f were successfully synthesized by a rapid and efficient two-step one-pot nucleophilic fluorination reaction using 5-O-mesylate precursors and [(18)F]F(-). For in vivo studies, tumor xenografts were grown in nude mice by implanting RG2 cells stably expressing HSV1-tk (RG2TK+) and wild-type cells (RG2).

View Article and Find Full Text PDF

Objectives: Development of imaging agents for pancreatic beta cell mass may provide tools for studying insulin-secreting beta cells and their relationship with diabetes mellitus. In this paper, a new imaging agent, [(18)F](+)-2-oxiranyl-3-isobutyl-9-(3-fluoropropoxy)-10-methoxy-2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]isoquinoline [(18)F](+)4, which displays properties targeting vesicular monoamine transporter 2 (VMAT2) binding sites of beta cells in the pancreas, was evaluated as a positron emission tomography (PET) agent for estimating beta cell mass in vivo. The hydrolyzable epoxide group of (+)4 may provide a mechanism for shifting biodistribution from liver to kidney, thus reducing the background signal.

View Article and Find Full Text PDF

Unlabelled: Recent studies on gene expression of beta-cell mass (BCM) in the pancreas showed that vesicular monoamine transporter 2 (VMAT2) is highly expressed in the BCM (mainly in the islets of Langerhans). Imaging pancreatic BCM may provide an important tool for understanding the relationship between loss of insulin-secreting beta-cells and onset of diabetes mellitus. In this article, 9-fluoropropyl-(+)-dihydrotetrabenazine (FP-(+)-DTBZ), which is a VMAT2 imaging agent, was evaluated as a PET agent for estimating BCM in vivo.

View Article and Find Full Text PDF