Publications by authors named "Eric Blahut"

Objective: Autologous chondrocyte implantation was the first cell-based therapy that used a tissue engineering process to repair cartilage defects. Recently improved approaches and tissue-engineered cell constructs have been developed for growing patient populations. We developed a chondrocyte construct using a collagen gel and sponge scaffold and physicochemical stimuli, implanted with a surgical adhesive.

View Article and Find Full Text PDF

Multiple human tissue engineered cartilage constructs are showing promise in advanced clinical trials but identifying important measures of manufacturing reproducibility remains a challenge. FDA guidance suggests measuring multiple mechanical properties prior to implantation, because these properties could affect the long term success of the implant. Additionally, these engineered cartilage mechanics could be sensitive to the autologous chondrocyte source, an inherently irregular manufacturing starting material.

View Article and Find Full Text PDF

Human tissue engineered cartilage is a promising solution for focal cartilage defects, but these constructs do not have the same local mechanical properties as native tissue. Most clinically relevant engineered cartilage constructs seed human chondrocytes onto a collagen scaffold, which buckles at low loads and strains. This buckling creates local regions of high strain that could cause cell death and damage the engineered tissue.

View Article and Find Full Text PDF

An advantage of bioprinting is the ability to incorporate cells into the hydrogel bioink allowing for precise control over cell placement within a construct. Previous work found that the printability of collagen bioinks is highly dependent on their rheological properties. The effect of cell density on collagen rheological properties and, therefore, printability has not been assessed.

View Article and Find Full Text PDF