Publications by authors named "Eric Bezancon"

Development of very-low field MRI is an active area of research. It aims at reducing operating costs and improve portability. However, the signal-to-noise issue becomes prominent at ultra-low field (<1 mT), especially for molecular imaging purposes that addresses specific biochemical events.

View Article and Find Full Text PDF

The occurrence of pyruvate recycling in the rat brain was studied in either pentobarbital anesthetized animals or awake animals receiving a light analgesic dose of morphine, which were infused with either [1-13C]glucose + acetate or glucose + [2-13C]acetate for various periods of time. Metabolite enrichments in the brain, blood and the liver were determined from NMR analyses of tissue extracts. They indicated that: (i) Pyruvate recycling was revealed in the brain of both the anesthetized and awake animals, as well as from lactate and alanine enrichments as from glutamate isotopomer composition, but only after infusion of glucose + [2-13C]acetate.

View Article and Find Full Text PDF

Competition between glucose and lactate as oxidative energy substrates was investigated in both primary cultures of astrocytes and neurons using physiological concentrations (1.1 mm for each). Glucose metabolism was distinguished from lactate metabolism by using alternatively labelled substrates in the medium ([1-13C]glucose + lactate or glucose + [3-13C]lactate).

View Article and Find Full Text PDF

Brain endogenous lactate metabolism was investigated by ex vivo nuclear magnetic resonance (NMR) spectroscopy study after the infusion of rats with a solution of glucose and lactate labeled as either [3-(13)C]lactate or [1-(13)C]glucose, when their cerebral activity was more or less depressed under the influence of either pentobarbital, alphachloralose, or morphine. We found that: (1) the ratio between the enrichment of alanine C3 and that of glutamate C4, gamma-aminobutyric acid (GABA) C2, glutamine C4, or aspartate C3 decreased from pentobarbital to alphachloralose and morphine whatever the labeled precursor, indicating a link between metabolic and cerebral activity; (2) under glucose + [3-(13)C]lactate infusion, alanine C3 and acetyl-CoA C2 enrichments were higher than that of lactate C3, revealing the occurrence of an isotopic dilution of the brain exogenous lactate (arising from the blood) by lactate from the brain (endogenous lactate), and that the latter was synthesized from glycolysis in a compartment other than neurons; and (3) the contribution of labeled glucose and lactate to acetyl-CoA and amino acid enrichment indicated that the involvement of blood glucose relative to that of blood lactate to brain metabolism was correlated with cerebral activity. The evolution of metabolite enrichments, however, indicated that the cerebral activity-dependent increase in the contribution of blood glucose relative to that of blood lactate to brain metabolism occurred partly via the increase in lactate metabolism generated from astrocytic glycolysis.

View Article and Find Full Text PDF

Brain metabolism of glucose and lactate was analyzed by ex vivo NMR spectroscopy in rats presenting different cerebral activities induced after the administration of pentobarbital, alpha-chloralose, or morphine. The animals were infused with a solution of either [1-(13)C]glucose plus lactate or glucose plus [3-(13)C]lactate for 20 min. Brain metabolite contents and enrichments were determined from analyses of brain tissue perchloric acid extracts according to their post-mortem evolution kinetics.

View Article and Find Full Text PDF

The involvement of brain lactate in neuronal metabolism was analyzed by ex vivo NMR spectroscopy with rats under the effects of pentobarbital, alphachloralose or morphine, which were infused with a solution of either [1-(13)C]glucose+lactate or glucose+[3-(13)C]lactate for 20 min. Electroencephalogram recordings indicated different brain electrical activity levels under the three drugs with a clear distinction between pentobarbital, on the one hand, and alphachloralose and morphine on the other. Labeling of metabolites in brain perchloric acid extracts and of blood glucose and lactate was determined by (13)C- and/or (1)H-observed/(13)C-edited-NMR spectroscopy.

View Article and Find Full Text PDF