Air pollution is one of the leading causes of death from noncommunicable diseases globally, and in Arizona, both mining activities and abandoned agriculture can generate erodible dust. This dust is transported via wind and can carry high amounts of toxic pollutants. Industry-adjacent communities, or "fenceline communities," are generally closer to the pollution sources and are disproportionally impacted by pollution, or in this case, dust.
View Article and Find Full Text PDFLead exposure has been shown to be harmful to humans in various settings and there are no safe levels of blood lead in children. At an Alternative Superfund site in Hayden-Winkelman, Arizona, with an active copper smelter and concentrator, lead exceedances in air and soil have been measured in the past 20 years. In this work, the U.
View Article and Find Full Text PDFEnvironmental and health risk concerns relating to airborne particles from mining operations have focused primarily on smelting activities. However, there are only three active copper smelters and less than a dozen smelters for other metals compared to an estimated 500000 abandoned and unreclaimed hard rock mine tailings in the US that have the potential to generate dust. The problem can also extend to modern tailings impoundments, which may take decades to build and remain barren for the duration before subsequent reclamation.
View Article and Find Full Text PDFThis study examines size-resolved physicochemical data for particles sampled near mining and smelting operations and a background urban site in Arizona with a focus on how hygroscopic growth impacts particle deposition behavior. Particles with aerodynamic diameters between 0.056-18 μm were collected at three sites: (i) an active smelter operation in Hayden, AZ, (ii) a legacy mining site with extensive mine tailings in Iron King, AZ, and (iii) an urban site, inner-city Tucson, AZ.
View Article and Find Full Text PDFWind erosion, transport and deposition of windblown dust from anthropogenic sources, such as mine tailings impoundments, can have significant effects on the surrounding environment. The lack of vegetation and the vertical protrusion of the mine tailings above the neighboring terrain make the tailings susceptible to wind erosion. Modeling the erosion, transport and deposition of particulate matter from mine tailings is a challenge for many reasons, including heterogeneity of the soil surface, vegetative canopy coverage, dynamic meteorological conditions and topographic influences.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2015
Government-led pollution prevention programs tend to focus on large businesses due to their potential to pollute larger quantities, therefore leaving a gap in programs targeting small and home-based businesses. In light of this gap, we set out to determine if a voluntary, peer education approach led by female, Hispanic community health workers (promotoras) can influence small and home-based businesses to implement pollution prevention strategies on-site. This paper describes a partnership between promotoras from a non-profit organization and researchers from a university working together to reach these businesses in a predominately Hispanic area of Tucson, Arizona.
View Article and Find Full Text PDFMining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling.
View Article and Find Full Text PDFMining operations are a potential source of metal and metalloid contamination by atmospheric particulate generated from smelting activities, as well as from erosion of mine tailings. In this work, we show how lead isotopes can be used for source apportionment of metal and metalloid contaminants from the site of an active copper mine. Analysis of atmospheric aerosol shows two distinct isotopic signatures: one prevalent in fine particles (<1μm aerodynamic diameter) while the other corresponds to coarse particles as well as particles in all size ranges from a nearby urban environment.
View Article and Find Full Text PDFMining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb and other potentially toxic elements. In this work, we show that size-resolved concentrations of As and Pb generally follow a bimodal distribution with the majority of contaminants in the fine size fraction (<1 μm) around mining activities that include smelting operations at various sites in Australia and Arizona. This evidence suggests that contaminated fine particles (<1 μm) are the result of vapor condensation and coagulation from smelting operations while coarse particles are most likely the result of windblown dust from contaminated mine tailings and fugitive emissions from crushing and grinding activities.
View Article and Find Full Text PDFA statistical analysis of data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network of aerosol samplers has been used to study the spatial and temporal concentration trends in airborne particulate metals and metalloids for southern Arizona. The study region is a rapidly growing area in southwestern North America characterized by high fine soil concentrations (among the highest in the United States), anthropogenic emissions from an area within the fastest growing region in the United States, and a high density of active and abandoned mining sites. Crustal tracers in the region are most abundant in the summer (April - June) followed by fall (October - November) as a result of dry meteorological conditions which favor dust emissions from natural and anthropogenic activity.
View Article and Find Full Text PDFAtmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration.
View Article and Find Full Text PDFMining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of contaminants from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling.
View Article and Find Full Text PDFThis study examines the role of aqueous secondary organic aerosol formation in the North American Sonoran Desert as a result of intense solar radiation, enhanced moisture, and biogenic volatile organic compounds (BVOCs). The ratio of water-soluble organic carbon (WSOC) to organic carbon (OC) nearly doubles during the monsoon season relative to other seasons of the year. When normalized by mixing height, the WSOC enhancement during monsoon months relative to preceding dry months (May-June) exceeds that of sulfate by nearly a factor of 10.
View Article and Find Full Text PDFParticulate matter emissions near active copper smelters and mine tailings in the southwestern United States pose a potential threat to nearby environments owing to toxic species that can be inhaled and deposited in various regions of the body depending on the composition and size of the particles, which are linked by particle hygroscopic properties. This study reports the first simultaneous measurements of size-resolved chemical and hygroscopic properties of particles next to an active copper smelter and mine tailings by the towns of Hayden and Winkelman in southern Arizona. Size-resolved particulate matter samples were examined with inductively coupled plasma mass spectrometry, ion chromatography, and a humidified tandem differential mobility analyzer.
View Article and Find Full Text PDFContaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations.
View Article and Find Full Text PDFThis study reports a comprehensive characterization of atmospheric aerosol particle properties in relation to meteorological and back trajectory data in the southern Arizona region, which includes two of the fastest growing metropolitan areas in the United States (Phoenix and Tucson). Multiple data sets (MODIS, AERONET, OMI/TOMS, MISR, GOCART, ground-based aerosol measurements) are used to examine monthly trends in aerosol composition, aerosol optical depth (AOD), and aerosol size. Fine soil, sulfate, and organics dominate PM mass in the region.
View Article and Find Full Text PDFMining operations are potential sources of airborne metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, with potential deleterious effects on human health and ecology. Fine particulates such as those resulting from smelting operations may disperse more readily into the environment than coarser tailings dust.
View Article and Find Full Text PDFProduction of toxic sodium azide (NaN(3)) surged worldwide over the past two decades to meet the demand for automobile air bag inflator propellant. Industrial activity and the return of millions of inflators to automobile recycling facilities are leading to increasing release of NaN(3) to the environment so there is considerable interest in learning more about its environmental fate. Water soluble NaN(3) could conceivably be found in drinking water supplies so here we describe the kinetics and mechanism of the reaction of azide with hypochlorite, which is often used in water treatment plants.
View Article and Find Full Text PDFThe role of cerium oxide on direct oxidation of perchloroethylene (PCE) by a three-way catalyst was explored. In the absence of an external oxidizing agent, PCE was oxidized over an alumina supported Pt/Rh three-way catalyst. We hypothesize that the chlorine atoms in the adsorbed PCE interact with oxygen in CeO(2), reducing the cerium to create CeCl(3).
View Article and Find Full Text PDFThe validity of a new method to destroy gas-phase perchloroethylene (PCE) is demonstrated at bench scale using a fixed-bed reactor that contains a Pt/Rh catalyst. Hydrogen and oxygen were simultaneously fed to the reactor together with PCE. The conversion efficiencies of PCE were sensitive to H(2)/O(2) ratio and reactor temperature.
View Article and Find Full Text PDFThe use of propane in combination with oxygen to promote the destruction of perchloroethylene (PCE) over a platinum (Pt)/rhodium (Rh) catalyst on a cerium/zirconium oxide washcoat supported on an alumina monolith was explored. Conversions of PCE were measured in a continuous flow reactor with residence times less than 0.5s and temperatures ranging from 200 to 600 degrees C.
View Article and Find Full Text PDFA new thermocatalytic method to destroy chlorinated solvents has been developed in the laboratory and tested in a pilot field study. The method employs a conventional Pt/Rh catalyst on a ceramic honeycomb. Reactions proceed at moderate temperatures in the simultaneous presence of oxygen and a reductant (mixed redox conditions) to minimize catalyst deactivation.
View Article and Find Full Text PDFEnviron Sci Technol
January 2006
A conventional fuel cell was used as a catalytic reactor to treat soil vapor extraction (SVE) gases contaminated with trichloroethylene (TCE). The SVE gases are fed to the cathode side of the fuel cell, where TCE is reduced to ethane and hydrochloric acid. The results obtained suggest that TCE reduction occurs by a catalytic reaction with hydrogen that is re-formed on the cathode's surface beyond a certain applied cell potential.
View Article and Find Full Text PDFA convenient new chemical actinometer was developed to measure the spectral output of laboratory ultraviolet (UV) light sources over the wavelength range of 260-330 nm. It can also be used to measure solar UV irradiance (< or =325 nm). The actinometer is based on the photoreduction of aqueous carbon tetrachloride (CT) to chloroform (CF) in the presence of acetone (the chromophore) and 2-propanol (the reductant).
View Article and Find Full Text PDFProcesses related to the tropospheric lifetime and fate of hydrazoic acid, HN3, have been studied. The ultraviolet absorption spectrum of HN3 is shown to possess a maximum near 262 nm with a tail extending to at least 360 nm. The photolysis quantum yield for HN3 is shown to be approximately 1 at 351 nm.
View Article and Find Full Text PDF