Publications by authors named "Eric Berglund"

Article Synopsis
  • Acetyl-CoA carboxylase (ACC) is key for liver metabolism by creating malonyl-CoA, which aids in fat production and reduces fat burning.
  • Inhibiting ACC led to increased supply of TCA cycle intermediates and enhanced gluconeogenesis, even during fasting, by activating key enzymes like CPT-1 and pyruvate carboxylase.
  • This metabolic shift was linked to higher proteolysis and amino acid availability for glucose production, and was influenced by the activation of Nrf2, suggesting ACC's role goes beyond just fat metabolism.
View Article and Find Full Text PDF

The anorexigenic effect of serotonergic compounds has largely been attributed to activation of serotonin 2C receptors (Htr2cs). Using mouse genetic models in which Htr2c can be selectively deleted or restored (in Htr2c-null mice), we investigate the role of Htr2c in forebrain Sim1 neurons. Unexpectedly, we find that Htr2c acts in these neurons to promote food intake and counteract the anorectic effect of serotonergic appetite suppressants.

View Article and Find Full Text PDF

Mechanisms underlying postprandial and obesity-associated plasma ghrelin reductions are incompletely understood. Here, using ghrelin cell-selective insulin receptor-KO (GhIRKO) mice, we tested the impact of insulin, acting via ghrelin cell-expressed insulin receptors (IRs), to suppress ghrelin secretion. Insulin reduced ghrelin secretion from cultured gastric mucosal cells of control mice but not from those of GhIRKO mice.

View Article and Find Full Text PDF

Insulin-induced hypoglycemia is a major limiting factor in maintaining optimal blood glucose in patients with type 1 diabetes and advanced type 2 diabetes. Luckily, a counterregulatory response (1) system exists to help minimize and reverse hypoglycemia, although more studies are needed to better characterize its components. Recently, we showed that the hormone ghrelin is permissive for the normal CRR to insulin-induced hypoglycemia when assessed in mice without diabetes.

View Article and Find Full Text PDF

Insulin-induced hypoglycemia leads to far-ranging negative consequences in patients with diabetes. Components of the counterregulatory response (CRR) system that help minimize and reverse hypoglycemia and coordination between those components are well studied but not yet fully characterized. Here, we tested the hypothesis that acyl-ghrelin, a hormone that defends against hypoglycemia in a preclinical starvation model, is permissive for the normal CRR to insulin-induced hypoglycemia.

View Article and Find Full Text PDF

Background:  Low estrogen states, exemplified by postmenopausal women, are associated with increased adiposity and metabolic dysfunction. We recently reported a paradox, in which a conditional estrogen receptor-alpha (ERα) mutant mouse shows a hyper-metabolic phenotype with enhanced brown/beige cell formation ("browning/beiging").

Hypothesis:  These observations led us to consider that although systemic deficiency of estrogen or ERα in mice results in obesity and glucose intolerance at room temperature, cold exposure might induce enhanced browning/beiging and improve glucose metabolism.

View Article and Find Full Text PDF

The hepatic TCA cycle supports oxidative and biosynthetic metabolism. This dual responsibility requires anaplerotic pathways, such as pyruvate carboxylase (PC), to generate TCA cycle intermediates necessary for biosynthesis without disrupting oxidative metabolism. Liver-specific PC knockout (LPCKO) mice were created to test the role of anaplerotic flux in liver metabolism.

View Article and Find Full Text PDF

Leptin resistance is a hallmark of obesity with unclear etiology. Celastrol, a compound found in the roots of the and known to reduce endoplasmic reticulum (ER) stress, has recently emerged as a promising candidate to treat obesity by improving leptin sensitivity. However, the underlying neural mechanisms by which celastrol reduces obesity remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • - PEPCK is an enzyme in the liver and kidney involved in gluconeogenesis, with lesser roles in fatty acid and amino acid metabolism occurring in the small intestine, although its exact function there has been unclear.
  • - Creating a mouse model lacking intestinal PEPCK revealed that while gluconeogenesis was abolished, blood sugar levels remained stable, suggesting its limited role in glucose regulation.
  • - The knockout mice displayed reduced fat absorption and altered amino acid profiles, indicating that intestinal PEPCK primarily contributes to digesting dietary fats and processing amino acids rather than glucose production.
View Article and Find Full Text PDF

Glucagon receptor (GcgR) blockade has been proposed as an alternative to insulin monotherapy for treating type 1 diabetes since deletion or inhibition of GcgRs corrects hyperglycemia in models of diabetes. The factors regulating glycemia in a setting devoid of insulin and glucagon function remain unclear but may include the hormone ghrelin. Not only is ghrelin release controlled by glucose but also ghrelin has many actions that can raise or reduce falls in blood glucose level.

View Article and Find Full Text PDF

Whether neuronal inositol-requiring enzyme 1 () is required for the proper regulation of energy balance and glucose homeostasis is unclear. We found that pro-opiomelanocortin ()-specific deficiency of accelerated diet-induced obesity concomitant with a decrease in energy expenditure. This hypometabolic phenotype included deficits in thermogenic responses to diet and cold exposure as well as "beiging" of white adipose tissue.

View Article and Find Full Text PDF

Cold temperatures induce progenitor cells within white adipose tissue to form beige adipocytes that burn energy and generate heat; this is a potential anti-diabesity therapy. However, the potential to form cold-induced beige adipocytes declines with age. This creates a clinical roadblock to potential therapeutic use in older individuals, who constitute a large percentage of the obesity epidemic.

View Article and Find Full Text PDF

Objective: Insulin resistance causes type 2 diabetes mellitus and hyperglycemia due to excessive hepatic glucose production and inadequate peripheral glucose uptake. Our objectives were to test the hypothesis that the proposed CREB/CRTC2 inhibitor salt inducible kinase 1 (SIK1) contributes to whole body glucose homeostasis in vivo by regulating hepatic transcription of gluconeogenic genes and also to identify novel SIK1 actions on glucose metabolism.

Methods: We created conditional (floxed) SIK1-knockout mice and studied glucose metabolism in animals with global, liver, adipose or skeletal muscle Sik1 deletion.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to explore the potential of SIRT6 as a novel molecular target for treating obesity and type 2 diabetes mellitus (T2DM), given the conflicting results from previous research on its role in metabolism.
  • - Researchers created a new mouse model (Sirt6BAC mice) that overexpresses SIRT6 naturally and conducted various metabolic tests that showed these mice could avoid high-calorie diet-induced issues like hyperglycemia.
  • - The findings indicated that SIRT6 overexpression improves insulin sensitivity in skeletal muscle and liver, suggesting it could be a beneficial factor in metabolic health.
View Article and Find Full Text PDF

Circulating carbohydrates are an essential energy source, perturbations in which are pathognomonic of various diseases, diabetes being the most prevalent. Yet many of the genes underlying diabetes and its characteristic hyperglycaemia remain elusive. Here we use physiological and genetic interrogations in D.

View Article and Find Full Text PDF

Liver fibrosis occurs as a consequence of chronic injuries from viral infections, metabolic disorders, and alcohol abuse. Fibrotic liver microenvironment (LME) is characterized by excessive deposition and aberrant turnover of extracellular matrix proteins, which leads to increased tissue stiffness. Liver stiffness acts as a vital cue in the regulation of hepatic responses in both healthy and diseased states; however, the effect of varying stiffness on liver cells is not well understood.

View Article and Find Full Text PDF

To determine the role of glucagon action in diet-induced and genetic type 2 diabetes (T2D), we studied high-fat-diet-induced obese (DIO) and leptin receptor-defective (LepR(-/-)) rodents with and without glucagon receptors (GcgRs). DIO and LepR(-/-),GcgR(+/+) mice both developed hyperinsulinemia, increased liver sterol response element binding protein 1c, and obesity. DIO GcgR(+/+) mice developed mild T2D, whereas LepR(-/-),GcgR(+/+) mice developed severe T2D.

View Article and Find Full Text PDF

The molecular mechanisms underlying neuronal leptin and insulin resistance in obesity and diabetes remain unclear. Here we show that induction of the unfolded protein response transcription factor spliced X-box binding protein 1 (Xbp1s) in pro-opiomelanocortin (Pomc) neurons alone is sufficient to protect against diet-induced obesity as well as improve leptin and insulin sensitivity, even in the presence of strong activators of ER stress. We also demonstrate that constitutive expression of Xbp1s in Pomc neurons contributes to improved hepatic insulin sensitivity and suppression of endogenous glucose production.

View Article and Find Full Text PDF

We determined whole-fish polychlorinated biphenyl (PCB) concentrations of 25 male and 25 female age-7 ciscoes (Coregonus artedi) captured from a spawning aggregation in Thunder Bay, Lake Superior, during November 2010. We also determined PCB concentrations in the ovaries and somatic tissue of five additional female ciscoes (ages 5-22). All 55 of these ciscoes were in ripe or nearly ripe condition.

View Article and Find Full Text PDF

Whether melanocortin 4 receptors (MC4Rs) in extra-hypothalamic neurons, including cholinergic autonomic pre-ganglionic neurons, are required to control energy and glucose homeostasis is unclear. We found that MC4Rs in sympathetic, but not parasympathetic, pre-ganglionic neurons were required to regulate energy expenditure and body weight, including thermogenic responses to diet and cold exposure and 'beiging' of white adipose tissue. Deletion of Mc4r genes in both sympathetic and parasympathetic cholinergic neurons impaired glucose homeostasis.

View Article and Find Full Text PDF

Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammation; however, which Tlr4-expressing cells mediate this effect is unknown.

View Article and Find Full Text PDF

The hormone ghrelin stimulates eating and helps maintain blood glucose upon caloric restriction. While previous studies have demonstrated that hypothalamic arcuate AgRP neurons are targets of ghrelin, the overall relevance of ghrelin signaling within intact AgRP neurons is unclear. Here, we tested the functional significance of ghrelin action on AgRP neurons using a new, tamoxifen-inducible AgRP-CreER(T2) transgenic mouse model that allows spatiotemporally-controlled re-expression of physiological levels of ghrelin receptors (GHSRs) specifically in AgRP neurons of adult GHSR-null mice that otherwise lack GHSR expression.

View Article and Find Full Text PDF

According to theoretical studies, narrow graphene nanoribbons with atomically precise armchair edges and widths of <2 nm have a bandgap comparable to that in silicon (1.1 eV), which makes them potentially promising for logic applications. Different top-down fabrication approaches typically yield ribbons with width >10 nm and have limited control over their edge structure.

View Article and Find Full Text PDF